
On Privacy and Confidentiality of Communications in
Organizational Graphs

Masoumeh Shafieinejad
University of Waterloo

Waterloo, Canada
masoumeh@uwaterloo.ca

Huseyin Inan
Microsoft Research

Redmond, United States
Huseyin.Inan@microsoft.com

Marcello Hasegawa
Microsoft Inc.

Redmond, United States
marcellh@microsoft.com

Robert Sim
Microsoft Research

Redmond, United States
rsim@microsoft.com

ABSTRACT
Machine learned models trained on organizational communication
data, such as emails in an enterprise, carry unique risks of breaching
confidentiality, even if the model is intended only for internal use.
This work shows how confidentiality is distinct from privacy in an
enterprise context, and aims to formulate an approach to preserving
confidentiality while leveraging principles from differential privacy
(DP). Works that apply DP techniques to natural language pro-
cessing tasks usually assume independently distributed data, and
overlook potential correlation among the records. Ignoring this cor-
relation results in a fictional promise of privacy while, conversely,
extending DP techniques to include group privacy is over-cautious
and severely impacts model utility. We show this gap between these
two extreme measures of privacy over two language tasks, and in-
troduce a middle-ground solution by capturing the correlation in
the social network graph, and incorporating this correlation in the
privacy calculations through Pufferfish privacy principles.

1 INTRODUCTION
A number of applications in natural language understanding rely on
language models [1, 3]. To enable such models it is necessary to pro-
cess training data that best represents the target application. Such
tasks become especially sensitive in the setting of organizational
communication, where organizations, individuals, or communities
may share secret data, and preserving confidentiality is of utmost
importance. Organizational communication often presents a com-
plex underlying structure of interactions which is well modeled by
a social graph. Data privacy in graphs have been addressed by a
number of previous works [6, 9, 15, 17, 22, 28, 30], where most of the
works based on differentially private approaches model individuals
as nodes and exchanged messages as edges. These proposed meth-
ods provide either node level privacy guarantees [2, 4, 5, 10, 16, 25],
or edge level privacy guarantees [12, 15, 23, 26]. In the context of
organizational communication we define node level guarantees as
individual privacy and edge level guarantees as confidentiality. That
is, confidentiality involves protecting information that is shared
between two or more individuals in the organization. In this work,
we set aside questions of individual privacy and examine problems
in ensuring confidentiality in organizational communication.

In considering the case of social graphs, often the properties
of an edge can be inferred from the properties of other nearby

edges. [19, 29] show that the dependency between instances affects
the robustness of differential privacy guarantees. One approach
to address this problem is via group differential privacy, which
assumes that all edges in a group of participants are fully correlated,
and queries on the graph must be invariant to the presence/absence
of the entire group. This can significantly impact the accuracy of the
query by being over-protective of edge-edge relationships [4, 10].

We address the issues presented by edge correlation by employ-
ing a generalized version of differential privacy called Pufferfish
[18, 27]. In Pufferfish a set Spairs ⊆ S × S of complementary se-
cret pairs is defined, and privacy is provided by ensuring the secret
pairs are indistinguishable for any data distribution 𝜃 (capturing the
correlation among the records) known to the adversary. Through
this requirement the correlation problem can be addressed while
allowing utility to be preserved. In addition, the non-independence
between edges provides us with a simple model for confidential-
ity such that information passing between neighboring edges is
more likely to be confidential than information that is randomly
distributed in the social graph. From this perspective, we propose a
privacy model that accounts for information dependence between
edges in the graph and define a notion of what constitutes an edge’s
neighborhood. Edges may be labeled with a set of zero or more
properties. For example, an edge may be labeled with the token
“acquisition” if the correspondents discussed the topic “acquisition”.

In our work we focus on the task of safely releasing a set of edge
properties present in the graph. For this task, we are limited to
L-Lipschitz queries which are sufficient to cover counting and fre-
quency queries. For language tasks, this can be viewed as extracting
common n-grams from correspondences [7, 11].

2 PRELIMINARIES
We provide the definitions for the concepts used in the paper.

2.1 Pufferfish Privacy
We cover a review of differential privacy in Appendix A. Differen-
tial privacy provides robust guarantees for a wide range of data-
base queries. For our scenario, it is useful to consider Pufferfish
privacy [18], which is a Bayesian privacy framework providing
rigorous privacy guarantees against many types of attackers. An
advantage of the Pufferfish framework is that a domain expert can
develop rigorous privacy definitions for their data sharing needs



without holding expertise in privacy. This is achieved by specifying
three components in the Pufferfish privacy framework: a set S of
potential secrets, a set Spairs ⊆ S ×S of discriminative secret pairs,
and a collection of data distributions Θ. The Pufferfish framework
provides a rich class of privacy definitions based on the components
specified by a domain expert. We formally define the framework in
the following based on [18].

Definition 2.1 (Pufferfish Privacy). A randomized algorithm
M is said to provide 𝜖-Pufferfish privacy for a domain (S,Spairs,Θ)
if for all distributions 𝜃 ∈ Θ, for all secret pairs (𝑠𝑖 , 𝑠 𝑗 ) ∈ Spairs, and
for all possible outputs𝑤 ∈ Range(M) it satisfies���� PrM,𝜃 (M(D) = 𝑤 |𝑠𝑖 , 𝜃 )

PrM,𝜃 (M(D) = 𝑤 |𝑠 𝑗 , 𝜃 )

���� ≤ exp(𝜖)

where D is drawn from the distribution 𝜃 and 𝑠𝑖 and 𝑠 𝑗 are such that
Pr(𝑠𝑖 |𝜃 ) ≠ 0 and Pr(𝑠 𝑗 |𝜃 ) ≠ 0.

We note that there is an additional source of randomness in the
definition of Pufferfish privacy. The dataset D is itself a random
variable that is drawn from a distribution 𝜃 ∈ Θ. In words, a domain
expert constructs the set 𝑆 for the potential secrets that are desired
to be hidden (e.g. private data of an individual). Spairs is simply
the pair of such potential secrets that we would like to guarantee
are indistinguishable in evaluating M. Finally, Θ is a collection of
distributions where each probability distribution 𝜃 ∈ Θ corresponds
to an attacker to be protected against. Θ can be selected based
on the fine grain of how data can be plausibly generated and it
also reflects the attackers’ beliefs in how the data were generated
(incorporating any background knowledge and side information).
The whole process gives the domain expert flexibility to customize
privacy to the specific set of secrets and data generation scenarios
that are typical in their domain. We further point out that Pufferfish
privacy provides a general framework in the sense that it covers
𝜖-differential privacy as an instantiation for a particular choice of
domain (S,Spairs,Θ) (see Theorem 6.1 in [18]).

2.2 Wasserstein Mechanism
While there is no efficient general mechanism that applies to any
Pufferfish instantiation, there are a number of mechanisms for
specific Pufferfish instantiations [13, 18]. For general Pufferfish
instantiation, [27] introduce a mechanism that achieves Pufferfish
privacy, but does not satisfy efficiency in its original form. We in-
troduce their base mechanism here. Later in Section 3, we present
our adjustments to their mechanism that makes it efficient to uti-
lize for our use case of enterprise communications. The main idea
of the mechanism in [27] is similar to the Laplace mechanism in
differential privacy. Instead of adding noise based on the global sen-
sitivity Δ𝑓 in differential privacy, Song et al. use the distributions
Pr(𝑓 (D)|𝑠𝑖 , 𝜃 ) and Pr(𝑓 (D)|𝑠 𝑗 , 𝜃 ) in the Pufferfish framework, pro-
pose a metric quantifying the worst case distance between these
two distributions, and inject noise proportional to this distance.
They find that the ∞-Wasserstein distance is the right choice for
this purpose.

Definition 2.2 (∞-Wasserstein distance). Let 𝜇, 𝜈 be two
probability distributions on R and 𝜏 (𝜇, 𝜈) denote the set of all joint
distributions with marginals 𝜇 and 𝜈 . The ∞-Wasserstein distance

Figure 1: Neighborhood correlation, each edge is correlated
with its adjacent edges. The (2,3) edge is adjacent to (2,1),
(2,4), (3,1) and (3,4). Edge (5,7) is adjacent to edges (5,1), (5,6),
(5,8), (5,9), and (7,6).

between 𝜇 and 𝜈 is defined as

𝑊∞ (𝜇, 𝜈) = inf
𝛾 ∈𝜏 (𝜇,𝜈)

max
(𝑥,𝑦) ∈support(𝛾 )

| 𝑥 − 𝑦 | .

Intuitively,𝑊∞ measures the maximal distance that any probabil-
ity mass moves while transforming 𝜇 to 𝜈 in the most optimal way
possible.𝑊∞ is related to the well-known Earth Mover’s Distance
in that it accounts for the maximal shift in probability over the
domain of 𝜏 but not the amount of mass in the shift [14]. Based
on the ∞-Wasserstein distance, the Wasserstein mechanism calcu-
lates the maximum over (𝑠𝑖 , 𝑠 𝑗 ) ∈ Spairs and 𝜃 ∈ Θ, analogous to
Δ𝑓 , and applies the Laplace noise proportional to the maximum
∞-Wasserstein distance. It is proven in [27] (see Theorem 3.2) that
this mechanism yields 𝜖-Pufferfish privacy.

Theorem 2.1 (Wasserstein mechanism). Let (S,Spairs,Θ) be a
domain. For any function 𝑓 : D → R the randomized mechanismM

M(D) = 𝑓 (D) + Laplace(0,𝑊 /𝜖)

where𝑊 = sup(𝑠𝑖 ,𝑠 𝑗 ) ∈Spairs,𝜃 ∈Θ𝑊∞ (𝜇𝑖𝜃 , 𝜈 𝑗𝜃 ) for 𝜇𝑖,𝜃 = Pr(𝑓 (D)|𝑠𝑖 , 𝜃 )
and 𝜈 𝑗,𝜃 = Pr(𝑓 (D)|𝑠 𝑗 , 𝜃 ) satisfies 𝜖-Pufferfish privacy.

In Appendix B, we review the Markov Quilt mechanism intro-
duced by Song et al.[27]. This mechanism covers a special case
where the dependence inside a dataset can be described by a Bayesian
network, and helps with reducing the computational complexity of
the Wasserstein mechanism. We calibrate this mechanism to our
setting in Section 3.1.

3 MECHANISM DESIGN
We consider a graph representation of the organizational commu-
nications, consisting of nodes for individuals and edges for the
correspondence among them. In our neighborhood model, we cap-
ture the correlation among the adjacent edges as shown in Figure 1.
We define the graph as a union of neighborhoods, where each neigh-
borhood is defined as a central edge and its adjacent neighbors. We
apply a conditional independence assumption that knowledge of
the adjacent edge properties is sufficient to determine the properties
of the central edge, independent of the rest of the graph. A change
in an edge’s properties will influence its neighbors. Using Pufferfish
privacy, if we can model the effect of this change probabilistically,
we can compute the Wasserstein distance between query distribu-
tions, providing a sensitivity measure that accounts for an edge’s
correlation with its neighbors.
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3.1 Privacy Definition
We use Pufferfish privacy to design a private mechanism for count-
ing one property in the graph, and extend it to all property counts:

(1) The database is a set of records: 𝑋 = {𝑋1, · · · , 𝑋𝑁 }; 𝑋𝑖 = 0
or 𝑋𝑖 = 1 corresponding to the events the edge i has the
property or not, indicating complementary secrets 𝑠0

𝑖
or 𝑠1

𝑖
.

(2) (S,Spairs,Θ): the set of secrets S = {𝑠0
𝑖
, 𝑠1
𝑖
; 𝑖 = 1, . . . , 𝑛}, the

secret pairs to be indistinguishable Spairs = {(𝑠0
𝑖
, 𝑠1
𝑖
), 𝑖 =

1, . . . , 𝑛}, and Θ, the set of models describing the correlation.
The Pufferfish privacy guarantee is shown in (1).

Pr
𝑀,𝜃

(𝑀 (𝑋 ) = 𝑤 |𝑠0𝑖 , 𝜃 ) ≤ 𝑒𝜖 Pr
𝑀,𝜃

(𝑀 (𝑋 ) = 𝑤 |𝑠1𝑖 , 𝜃 ) (1)

(a) S consists of the binary values of each 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛.
(b) Spairs (𝑠0𝑖 , 𝑠

1
𝑖
) indicates if a property is present on an edge.

(c) Θ: neighborhood correlation 𝜃 ∈ Θ. We use the Markov
Quilt mechanism from [27]. We empirically measure the
exact correlation inside the quilt.

(d) Query 𝑓 : Maps the dataset 𝑋 into a scalar 𝑓 (𝑋 ) = |𝑖 ∈
{1, . . . , 𝑛} : 𝑋𝑖 = 1|, counting the number of desired edges.

(3) Markov Quilt. We assume that each edge 𝑋𝑖 is correlated to
its adjacent (neighboring) edges 𝑋𝑁 and has no correlation
with the rest of the graph (neither to 𝑋𝑅 (remote edges),
nor to 𝑋𝑄 (edges on the quilt)), i.e. 𝛿 = 0 in [27]. card(𝑋𝑁 )
translates to the maximum number of adjacent edges to an
edge, i.e. 2 ×𝐷𝑚𝑎𝑥 − 1, where 𝐷𝑚𝑎𝑥 is the maximum degree
of a node in the graph, and we subtract 1 so as not to double-
count the central edge itself. 2 × 𝐷𝑚𝑎𝑥 group differential
privacy (Corollary A.1.1) would be a baseline for our case.

3.2 Correlation Models
To assess theWasserstein distance between neighboring secret pairs
(changing a single property from true to false or vice-versa), we
require a model of Pr(𝑓 (𝑋 ) = 𝑤 |𝑠𝑖 , 𝜃 ) that can be used to estimate
by howmuch a neighborhood’s labels might change due to a change
in the central edge’s label. By applying the Markov assumption,
we need only measure the impact of a label change on an edge’s
immediate neighborhood (i.e. its impact on the Markov quilt)–𝑤 is
measured for the local neighborhood and the rest of the graph is
assumed to be constant. We estimate three models:

• Conditional Model estimates the probability Pr(𝑓 (𝑋 ) =

𝑤 |𝑠𝑖 , deg(𝑋𝑖 ), freq(𝑎)), where deg(𝑋𝑖 ) is the number of edges
adjacent to edge 𝑋𝑖 , freq(𝑎) is the attacker’s prior on the fre-
quency of property 𝑎.

• Global Model ignores deg(𝑋𝑖 ) and freq(𝑎) and empirically
measures Pr(𝑓 (𝑋 ) = 𝑤 |𝑠 𝑗

𝑖
) for secrets 𝑠0

𝑖
and 𝑠1

𝑖
– a normal-

ized frequency histogram of how often 𝑓 (𝑋 ) = 𝑤 when the
central edge’s property is set, 𝑠1

𝑖
, and a separate histogram

for when it is not set 𝑠0
𝑖
.

• Binomial Model empirically estimates 𝑝𝑖 = Pr(𝑠 𝑗 |𝑠𝑖 ), the
probability distribution over a random adjacent edge’s se-
crets, given the label of the central edge, and then estimates
Pr(𝑓 (𝑋 ) = 𝑤 |𝑠𝑖 ) as a Binomial distribution parameterized by
𝑝𝑖 and deg(𝑋𝑖 ): 𝑃 (𝑓 (𝑋 ) = 𝑤 |𝑠𝑖 ) = Binomial(deg(𝑋𝑖 ), 𝑝𝑖 ).

Measuring the Wasserstein distance𝑊 =𝑚𝑎𝑥𝑋𝑖 ∈𝑋𝑊∞ (𝑋𝑖 ): for
each neighborhood in the graph, instantiate distributions Pr(𝑓 (𝑋 ) |𝑠0

𝑖
)

log(freq) log(deg) 𝑊∞ 𝑊

0 0 1.0 10.0
0 1 0.08 8.0
0 2 0.02 20.0
0 3 0.01 18.83
1 0 1.0 10.0
1 1 0.58 57.0
1 2 0.5 500.0
1 3 0.09 169.47
2 0 0.71 7.1
2 1 0.66 66.0
2 2 0.74 740.0
2 3 0.51 960.33
3 0 0.5 5.0
3 1 0.31 31
3 2 0.37 370.0
3 3 0.29 546.07
4 0 0.36 3.6
4 1 0.16 16.0
4 2 0.21 210.0
4 3 0.13 244.79

Table 1: Wasserstein metrics for edges with neighborhoods
of size deg and properties with global frequency freq. The
boxed row represents the highest sensitivity.

and Pr(𝑓 (𝑋 ) |𝑠1
𝑖
), and measure𝑊∞ as the maximum horizontal dis-

tance between their respective cumulative distribution functions.
𝑊 is then the maximal𝑊∞ over all neighborhoods. Note that𝑊 is
bounded above by the largest neighborhood size: flipping a single
edge property may trigger a flip in at most deg(𝑋𝑖 ) adjacent edges.

4 EXPERIMENTS
We run our experiments on the Avocado corpus [24]. The complete
graph contains 393 nodes (individuals) and 21312 edges (correspon-
dence). The largest neighborhood in the graph consists of 1883
edges. We extract unigrams and bi-grams from messages passed be-
tween edges and set the edge property𝑋𝑎

𝑖
to “true” for each n-gram

𝑎. Thus, an edge with the property “acquisition” set to true indi-
cates that at least one message passed between the connected nodes
containing the word “acquisition”. Edges with no such property are
implicitly “false” for that property.

4.1 Correlation Calculations
We construct the three correlation models, as described in sec-
tion 3.2. Table 1 shows the estimated Wasserstein measures for
the various property frequencies and neighborhood size under the
Conditional correlation model. The maximum influence𝑊∞ of a
bucket is scaled by the maximum neighborhood size for the bucket,
up to the largest possible neighborhood in the graph 𝑁𝑚𝑎𝑥 =

1883. While the largest 𝑊 corresponds to large neighborhoods
(log(deg) = 3), it does not necessarily correspond to high-frequency
or low-frequency properties. TheGlobalmodelmeasures Pr(𝑓 (𝑋 ) =
𝑤 |𝑠𝑖 ) directly for secrets 𝑠0

𝑖
and 𝑠1

𝑖
. The cumulative distribution

functions of these measures are shown in Figure 2. The maximal
Wasserstein measure is 866, corresponding to the maximum hori-
zontal distance between these two cumulative distributions. The
Binomial model represents the two label distributions by estimat-
ing Bernoulli parameters 𝑝0 and 𝑝1 for each label respectively, and
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Description 𝑊 𝜆 yield (%) RMSE

Edge-level privacy 1 10.0 809200.5 ± 529.6 (58.2%) 12.0 ± 0.02
Node privacy 1 10.0 77679.0 ± 159.4 (5.6%) 6.4 ± 0.06

Binomial Model 558 5580.0 695823.0 ± 521.3 (50.1%) 5577.7 ± 8.14
Global Model 866 8660.0 695316.8 ± 647.3 (50.0%) 8665.8 ± 12.15

Conditional model 960 9600.0 695366.3 ± 561.83 (50.0%) 9594.2 ± 12.24
Group privacy 1883 18830.0 695195.5 ± 428.6 (50.0%) 18833.3 ± 26.73

Table 2: Experimental results for histogram publication, 𝜖 = 100. We measure yield- the number of positive ngram counts for
each of the correlation models, as well as for node-level, edge-level, and group privacy.

0 250 500 750 1000 1250 1500 1750
0.0

0.2

0.4

0.6

0.8

1.0

s1
i

s0
i

Figure 2: Cumulative distributions of Pr(𝑓 (𝑋 ) = 𝑤 |𝑠 𝑗
𝑖
) for the

Global model, conditioned on secret 𝑠 𝑗
𝑖
.

Description 𝑊 𝐸 [yield] 𝜎

Edge-level privacy 1 24814.9 46.3
Node privacy 1 91 3.35

Binomial Model 558 228.7 5.71
Global Model 866 135 6.51

Conditional model 960 116.7 7.29
Group privacy 1883 41.9 3.11

Table 3: Results for DPSU, 𝜖 = 100. “Yield” is the number of
extracted n-grams for each of the correlationmodels, aswell
as for node-level, edge-level, and group privacy.

measuring the maximal Wasserstein distance between these dis-
tributions Pr(𝑓 (𝑋 ) = 𝑤 |𝑠 𝑗

𝑖
) = Binomial(deg(𝑋𝑖 ), 𝑝 𝑗 ). Using this

approach we emprically measure 𝑝0 to be 0.028 and 𝑝1 to be 0.274
and the maximal Wasserstein measure to be 558. These parameters
indicate that an adjacent edge is about ten times more likely to
have property 𝑎 if the central edge has property 𝑎.

4.2 Language Task
We apply the privacy mechanism to two query tasks, histogram
release and differentially private set union (DPSU) [11].

4.2.1 Histogram release. Our first task involves generating a his-
togram over edge properties. When edge properties are n-grams,
the task is equivalent to computing the frequencies of n-grams in
the corpus. To limit the sensitivity of the histogram to changes in a
single edge, we limit the contribution of each edge to 𝑐 = 1000 dis-
tinct n-grams. The value of 𝑐 determines the maximum number of
n-grams each edge contributes and we choose the 𝑐 most common
on each edge. Note that for this task it is assumed that the domain
of n-grams is known a priori from a public source. In practice it
is usually necessary to identify these using the private corpus as
well, which we address in the second experiment. Histogram publi-
cation can be accomplished using the Laplace mechanism, adding

Laplace noise with scale parameter 𝜆 = 𝑐𝑊 /𝜖 , where 𝑐 is the per-
edge contribution limit,𝑊 is the maximal Wasserstein distance
accounting for edge-neighborhood correlation, and 𝜖 is the privacy
budget. Table 2 contains the results for the histogram task. Even
with a large epsilon, and a moderate amount of noise, in the best
case (edge-level privacy) only 58% of n-grams have useful counts.
However, unlike the Conditional, Global, or Binomial models this
result doesn’t account for correlation. Recall that for group privacy,
the added noise is comparable to the total number of graph edges.

4.2.2 DP Set Union Application. DPSU aims to identify the union
of elements in 𝑘 input sets (in our setting, sets of edge properties on
𝑘 edges). Each edge has a contribution limit up to 𝑐 properties. To
account for edge correlation, it is necessary to scale the sensitivity
of the property counts by 𝑐𝑊 , as changing any edge can change
as many as 𝑐 properties and may influence its neighborhood by a
factor as large as𝑊 . We compare the yield (the number of published
n-grams) of the privacy mechanism over ten independent applica-
tions of the mechanism, for each of the three correlation models.
We also provide baseline yield for node-level, edge-level, and group
privacy. We choose 𝜖 = 100, reflecting the relatively small size of
the input graph, and 𝑐 = 1000. The results of this experiment are
shown in Table 3. The best result corresponds to edge-level pri-
vacy, which neglects to account for edge-neighborhood correlation.
Of the approaches that address correlation, the binomial model
yields the largest set of n-grams. If 𝜖 is large, and the number of
private entities numbers in the tens of thousands, the yield of a DP
mechanism can still be very limited. Our results illustrate how a
privacy mechanism can be appropriately modified to account for
neighborhood correlations in the graph, and we believe algorithmic
yields can only improve with larger graphs.

5 CONCLUSION
In this paper we explored the problem of preserving organizational
confidentiality in language tasks, leveraging the Pufferfish privacy
framework, while addressing non-IID data among edges in the or-
ganization’s social network. Our proposed scheme presents a com-
promise between two extreme measures of privacy, record-level
differential privacy and group privacy. By taking record correlation
into account, our scheme provides a more meaningful notion of
privacy than record-level differential privacy, while improving the
utility compared to group privacy. We summarize the contributions
of this work as the following: i) the privacy mechanism protects
edges, ii) the mechanism accounts for correlation between neigh-
boring edges, iii) the mechanism protects against changes to edge
properties, but not to changes in graph structure. Our mechanism
preserves the privacy while assuming: i) the graph structure is
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known to attackers, and ii) attackers may have access to a data
generation model 𝜃 that can predict an edge’s properties, given its
neighbors’.
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A DIFFERENTIAL PRIVACY
Differential privacy (DP) is a mathematical framework that offers
strong and robust guarantees at protecting user privacy under the
release of a query function calculated over a statistical database [8].
The main idea to achieve DP is perturbing the query function by
the introduction of random noise generated according to a carefully
chosen distribution. We formally define the notion of 𝜖-differential
privacy in the following:

Definition A.1 (𝜖-Differential Privacy [8]). A randomized
algorithmM is said to provide 𝜖-differential privacy if for any two
databases 𝐷,𝐷 ′ differing in only a single entry, and for any set 𝑆 ⊆
Range(𝑀),

Pr(M(𝐷) ∈ 𝑆)
Pr(M(𝐷 ′) ∈ 𝑆) ≤ exp(𝜖)

the probability taken over the randomness of the algorithmM.

A typical way to achieve 𝜖-differential privacy is to apply the
Laplace mechanism as shown in [20]. The main idea is to apply
noise to the output of a query for the sake of perturbation and the
amount of noise depends on the global sensitivity of the query and
the privacy budget 𝜖 . Let us first define the global sensitivity.

Definition A.2 (Global sensitivity). Let 𝑑 be a positive integer
and D be a collection of datasets. For any function 𝑓 : D → R𝑑 , the
global sensitivity of f, denoted by Δ𝑓 , is defined by

Δ𝑓 = max
𝐷1,𝐷2

| |𝑓 (𝐷1) − 𝑓 (𝐷2) | |1

where 𝐷1 and 𝐷2 are datasets in D differing in at most one element
and | | · | |1 denotes the ℓ1 norm.

Theorem A.1. Let 𝑑 be a positive integer and D be a collection of
datasets. For any 𝑓 : D → R𝑑 , the randomized mechanismM

M(D) = 𝑓 (D) + Laplace(0,Δ𝑓 /𝜖)

satisfies 𝜖-differential privacy.

Global sensitivity is a bound on the maximum effect of any
element in the dataset, which will be helpful to provide privacy to
all elements in the dataset. Based on this, for a given dataset 𝐷 , a
function 𝑓 , and the privacy parameter 𝜖 , the Laplace mechanism
adds Laplace(0, 𝜆) noise to the output of 𝑓 where the parameter 𝜆
is determined by both Δ𝑓 and 𝜖 .

Note that in the definition of 𝜖-differential privacy, the guarantee
holds for a single data entry. However, by applying the composabil-
ity property of differential privacy [21], the setting can be extended
to multiple data entries. If the goal is to protect a group, this can be
achieved by setting 𝜖 to 𝜖/𝑘 for any 𝑘 ∈ N where 𝑘 represents the
size of the group. In this case, all groups of size 𝑘 are 𝜖-differentially
private protected. We summarize this by formally defining group
differential privacy in the following corollary:

5

https://catalog.ldc.upenn.edu/LDC2015T03


Corollary A.1.1 (Group Differential Privacy). A random-
ized algorithm M is said to provide 𝜖-differential privacy for all
groups of size 𝑘 if for any two databases 𝐷,𝐷 ′ differing in at most 𝑘
entries, and for any set 𝑆 ⊆ Range(𝑀),

Pr(M(𝐷) ∈ 𝑆)
Pr(M(𝐷 ′) ∈ 𝑆) ≤ exp(𝜖)

where the probability is taken over the randomness of the algorithm
M. Any 𝜖/𝑘-differentially private algorithm is 𝜖-differentially private
for all groups of size 𝑘 .

We point out that the scaling of the noise is inversely propor-
tional to the privacy budget 𝜖 . Therefore, setting 𝜖 to 𝜖/𝑘 will in
turn change the noise level from Δ𝑓 /𝜖 to 𝑘 ·Δ𝑓 /𝜖 , which may signif-
icantly decrease the utility of the query. However, this is the price
to pay to obtain stronger privacy guarantees with group differential
privacy.

B MARKOV QUILT MECHANISM
The Wasserstein mechanism can be quite expensive in terms of
computational complexity, as it requires modeling the effects of
varying all complementary secret pairs on the function 𝑓 . [27]
introduce the Markov Quilt mechanism for the special case where
the dependence inside a dataset can be described by a Bayesian
network, which fits to our setting of interest. In the case where
the dependence is most effective in the “local” neighborhood, the
amount of noise can be calibrated with respect to the size of this
neighborhood. To this end, max-influence of a variable D𝑖 on a set
of variables D𝐴 under a distribution class Θ is defined as

𝑒Θ (D𝐴 |D𝑖 ) = sup
𝜃∈Θ

max
𝑎,𝑏∈X

max
𝑑𝐴∈X |D𝐴 |

log
Pr(D𝐴 = 𝑑𝐴 |D𝑖 = 𝑎, 𝜃 )
Pr(D𝐴 = 𝑑𝐴 |D𝑖 = 𝑏, 𝜃 )

where X denotes the range of each D𝑖 .
In terms of privacy it is an advantage that the dependence stays

as “local” as possible if one can find a large set D𝐴 such that D𝑖

has low max-influence on D𝐴 . Especially if one can claim certain
conditional independence from a variable towards some part of
the dataset it can also simplify the calibration of the noise. The
following notion is helpful to show what is described here.

Definition B.1 (Markov Quilt). A set of variables D𝑄 in a
dataset is a Markov Quilt for a variable D𝑖 if there exists a set
D𝑖 ∈ D𝑁 such thatD = D𝑁 ∪D𝑄 ∪D𝑅 andD𝑖 is conditionally in-
dependent from D𝑅 given D𝑄 , i.e. Pr(D𝑅 |D𝑄 ,D𝑖 ) = Pr(D𝑅 |D𝑄 ).

In this formulation [27] choose the subscripts 𝑁 and 𝑅 to repre-
sent “nearby” and “remote” nodes in the Bayesian network, respec-
tively, with the 𝑄 (quilt) nodes separating them and establishing
conditional independence.

Based on this notion the Markov Quilt mechanism protects a
variable D𝑖 by adding Laplace noise to a L-Lipschitz query 𝑓 with
scale parameter 𝐿 × |D𝑁 |/(𝜖 − 𝛿) where 𝛿 is an upper bound on
the max-influence of D𝑖 on D𝑄 . We note that the effect of D𝑖 is
obscured with noise whose amount is based on the cardinality of the
local variables (|D𝑁 |) and a correction term to account for the effect
of the distant variables (𝛿). Naturally, the privacy of all variables can
be protected by adding noise with the maximum scale parameter
over all variables D𝑖 ∈ D. It is shown in [27] (see Theorem 4.3)
that this mechanism yields 𝜖-Pufferfish privacy. It is also proven

that Markov Quilt mechanism satisfies sequential composition (see
Theorem 4.4 in [27]).

Theorem B.1 (MarkovQuilt Mechanism). Let (S,Spairs,Θ)
be a domain. For any L-Lipschitz function 𝑓 if each D𝑖 ∈ D has the
trivial quilt D𝑄 = ∅ (with D𝑁 = D, D𝑅 = ∅), then the Markov
Quilt Mechanism provides 𝜖-Pufferfish privacy.
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