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Abstract

We present a set of benchmark data and metrics for the eval-
uation of synthetic data generators on structured tabular data.
These benchmarks are distributed as a simple open-source
Python package to allow standardized and reproducible com-
parison of synthetic generator models on real-world data and
use cases. These data and metrics were developed for and vet-
ted through the NIST PSCR Differential Privacy Temporal
Map Challenge; the evaluation tools, k−marginal and Higher
Order Conjunction, proved effective in distinguishing com-
peting models in the competition environment.

Introduction
High performing, differentially private synthetic data gener-
ators have the potential to unlock sensitive datasets, allowing
for the exchange of valuable information while strictly lim-
iting how much can be learned about an individual record
in the dataset. When developing new approaches to private
synthetic data, researchers and practitioners need public and
reproducible benchmarks.

Here, we present SDNist (SDNist source code 2021), a
set of benchmark data and evaluation metrics packaged as
an open-source Python implementation tailored for the eval-
uation of synthetic data generators.

Shared benchmarks allow researchers and develop-
ers the ability to compare their results with common
(pseudo)metrics against the same datasets without onerous
preparation. The ambiguity surrounding scientific commu-
nication on dataset preparation and synthetic data genera-
tion harms reproducibility. This lack of objective, common
methods of evaluating the quality of private synthetic data is
a key barrier to exploration and adoption of its use. For this
reason, fully automated benchmark data, evaluation meth-
ods, and metrics computation expressed in a programming
language — hence unambiguous — are needed to compare
models, examine limits and capabilities, test performance,
and track progress over time in a reproducible, error-free and
rigorous way.

These benchmarks were developed from the 2020 Differ-
ential Privacy Temporal Map Challenge (Task et al. 2021),
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and informed by the previous 2018 Synthetic Data Chal-
lenge (Ridgeway et al. 2021), both hosted by the Public
Safety Communications Research Division (PSCR) of the
National Institute of Standards and Technology (NIST). This
online competition was cash incentivized and run in three
sprints on the DrivenData platform (Bull, Slavitt, and Lip-
stein 2016), where contestants trained their algorithms on
public data and submitted containerized versions of their
code for scoring on sequestered data of the same schema.

The Differential Privacy Temporal Map Challenge
focused on synthesizing time-stamped, geographically-
aggregated data in which one individual may contribute to
a sequence of events. These types of data capture a diverse
array of applications, including epidemiology and medical
records, transaction histories from marketing data, longitu-
dinal demographic data, and even traffic data for civic plan-
ning.

The benchmarks presented here are derived from chal-
lenge sprints that sought to privatize records from the Amer-
ican Community Survey (ACS) (U.S. Census Bureau 2012-
2018) and the City of Chicago taxi cab database (City of
Chicago Data Portal 2016-2020). These data highlight im-
portant challenges found in many real-world applications,
such as geographical heterogeneity, sparse data, and longi-
tudinal sequence privacy. These characteristics pose particu-
lar difficulties for both differential privacy and synthetic data
generation. We provide specifically calibrated scoring func-
tions, described in detail below, to optimize for preservation
of geographic and temporal trends.

Using the resources developed in the challenge environ-
ment, we have packaged test datasets and evaluation met-
rics for the efficient comparison of synthetic data generators.
The metrics described here have demonstrated their ability
to statistically distinguish sets of outputs from competing al-
gorithms in a competition environment. The data, organized
in training and evaluation sets, are drawn from real sources,
representing genuine use cases.

Related work
There are plenty of standard datasets and associated
machine-learning problems such as those from UCI (UC
Irvine 2021), Kaggle (Kaggle 2021), DrivenData (Driven-
Data 2021) or Papers-with-code (Papers with Code 2021).
But there are relatively few benchmarks to evaluate pri-



vate synthetic data generators. A recent initiative, SDGym
(SDGym 2021; Xu et al. 2020), brings standard problems,
an evaluation methodology for synthetic data and many gen-
erators to compare to (The Synthetic Data Vault 2021; Patki
2016). Unfortunately, SDGym does not consider differential
privacy in its evaluation, it is missing the privacy-loss (ϵ)
dimension in its output benchmarks and also some sort of
empirical testing of privacy guarantees, such as those devel-
oped in (Jayaraman and Evans 2019; Wilson et al. 2019).

Background
Differential privacy
Differential privacy is a theoretical framework to measure
and bound the privacy loss occurring when one publishes
an analysis on a private dataset (Dwork and Roth 2013). It
provides a strong protection by requiring that the revealed
information does not allow users to infer the presence of an
individual in the dataset.

We now move on to more formal definitions. Consider a
dataset, D, which is comprised of columns corresponding to
features and rows corresponding to observations about indi-
viduals. Each individual can have several observations. We
say that two datasets D and D′ are neighbors if they differ
by omission of one individual. The output M(D) of a ran-
domized mechanism M is (ϵ, δ)-differentially private if for
all pairs of neighboring datasets and all sets S of possible
outputs, we have

P(M(D) ∈ S) ≤ exp(ϵ)P(M(D′) ∈ S) + δ

ϵ is usually referred to as the privacy-loss budget, and
δ, a parameter that relaxes absolute privacy guarantees. A
smaller ϵ yields stronger protections and privacy guarantees.
Typical values of δ are δ ≤ 1/n2 where n is the number of
individuals in the dataset.

Synthetic data A useful property of the differential pri-
vacy framework is the post-processing property. It states that
any post-treatment of the output of a mechanism does not in-
cur any further privacy loss. This hints towards a generic and
streamlined method of privacy-preserving analysis. Indeed,
if a private dataset can be replaced by a synthetic version
generated under differential privacy constraints, the post-
processing property guarantees that there are no treatments
we can apply to the synthetic dataset that recover meaning-
ful information about actual individuals.

The challenge then becomes to synthesize a dataset that
is close enough to the private one so that the results of the
subsequent analyses are meaningful, while ensuring a dif-
ferential privacy constraint. In recent years, this problem
has received considerable attention in the scientific literature
(Zhang et al. 2014; Abay et al. 2018; Ge et al. 2021; Yoon,
Jordon, and van der Schaar 2019). A key issue is how to
evaluate such closeness: for discrete distributions, there exist
several metrics which do not require an estimate of the un-
derlying density, such as the Wasserstein metric (Peyré and
Cuturi 2020) or the Maximum Mean Discrepancy (Gretton
et al. 2012). However, due to the underlying dimension and
size of real-life datasets, we focus on simpler approaches to
quantify the utility of the synthetic data.

Table 1: Dataset transformation example for longitudinal
data

individual id year age
0 2012 36
0 2013 37
0 2014 38
1 2012 19
1 2014 21
...

→
age2012 age2013 age2014

36 37 38
19 ? 21

k−marginal score
In this section we describe a method, k−marginal, to quan-
tify the utility of the synthetically generated data. This con-
cept has also been called Mean Absolute Density Difference
(Raab, Nowok, and Dibben 2021).

Ideally, any statistical analysis query performed on the
real or the synthetic dataset should yield the same results.
However, when dealing with statistical datasets with many
features, analysts typically only select a few features that
they consider as relevant for their tasks and study correla-
tions among them. For instance, on census data, an analyst
could be interested in answering “how has the level of edu-
cation impacted the annual income in Ohio since 2010?”

Even though the number of features d of the original
dataset can be quite large, only k = 2 or k = 3 features
are usually considered at once, so that for most applications,
two datasets can be considered close if all k−way marginals
are close in some norm. This greatly reduces problem size.

Furthermore, for categorical datasets, a simple metric to
compare k−way marginals is the total variation norm, which
can be computed efficiently on low-dimensional histograms.
To alleviate the burden of computing d choose k distribu-
tions when the dataset contains a large number of features,
we randomly select a set of permutations of k features and
take the average total variation norm over the corresponding
k−way marginals. We notice that taking a reasonable subset
of all possible permutations still yields stable results.

Extension to individual longitudinal data Most real-life
datasets include repeated measurements about their individ-
uals. When several rows of the dataset might refer to a single
individual, the k−marginal metric introduced in the previ-
ous section does not directly capture how the behavior of
each individual differs in both datasets.

It turns out that there is often a reorganization of datasets
that allows the k−marginal scoring to take the temporal de-
pendency into account. For instance, if the measurements are
evenly spaced out, one can “unstack” the rows of an individ-
ual into new features. Using m to denote the number of oc-
currences of each individual, the number of rows is divided
by at most m while the number of features is itself multi-
plied by m. An example of such transformation is given in
table 1. Note that such transformation does not need to be
explicitly constructed in memory: the computations can be
performed directly on the original data. This is effectively
equivalent to computing a k−marginal score on the combi-
nations of (feature, measurement index) instead of (feature).



Higher Order Conjunction (HOC)
Like k−marginal, the Higher Order Conjunction (HOC)
metric was developed for the 2018 NIST Differential Pri-
vacy Synthetic Data Challenge (Ridgeway et al. 2021). The
HOC metric measures distributional similarity relative to
all information associated with a given individual. Like the
k−marginal metric, it is a randomized heuristic that is com-
puted for many iterations. A single iteration of the HOC met-
ric begins by sampling one target individual from the ground
truth data and generating a randomized similarity constraint;
for each feature i, it samples a similarity range (i−ki, i+ki).
If another individual falls within this range ∀i, they are con-
sidered to be similar to the target individual. The metric then
computes the percentage of individuals that are similar to the
target individual in both the ground truth and synthetic data,
and outputs the absolute difference as the score of this itera-
tion. The final score is averaged across all iterations.

Benchmark Problems
SDNist contains two benchmark problems for use in re-
searching and developing synthetic data generators, one
drawn from Chicago taxi trips, and the other from the Amer-
ican Community Survey. These problems and their associ-
ated data share several key properties which are helpful for
the development of synthetic data generators:

Longitudinal data Each problem consists of varying
length sequences of individual records; the maximum
records per individual is given as an input parameter. An
individual ID feature is used to join the records associated
with a single individual. To evaluate performance on non-
longitudinal data (i.e., providing privacy at the single record
level), the individual ID feature may be ignored.

Use of public data To allow for algorithm develop-
ment, we assume a common real-world scenario: that
the data owners are transitioning from releasing a simply
anonymized data product to releasing privacy-preserving
synthetic data, and thus there exist public data that can be
used for algorithm evaluation and tuning, without loss of
privacy. Each benchmark problem has public development
data for use in algorithm training and parameter tuning, and
at least two private data sets to be used for final scoring.
The final scoring data shares the same schema as the devel-
opment data, but has significantly different distributions to
discourage overfitting the public data.

Choice of (ϵ, δ) For general use the benchmark problems
may be run at any value of epsilon or delta. To compare
performance against the challenge leaderboard, solutions
should be scored three times with ϵ ∈ {0.1, 1, 10} for the
ACS problem, ϵ ∈ {1, 2, 10} for the Taxi problem, and with
negligible δ = 1/n2. These values were selected to encom-
pass both smaller epsilon values that are often used in re-
search, and larger values used in real-world practice.

Data Characteristics
American Community Survey (ACS) The ACS data
schema has 35 features, a maximum number of 7 records per

individual, covers 7 years as time segments, and contains up
to 181 geographic regions per data set.

Processing: The source data contains only one record per
individual; to artificially create longitudinal data, records
from different years were joined to form simulated individu-
als with 4-7 annual records. Traits such as age, sex, race, ed-
ucation, and citizenship were used as hard constraints in the
matching (for example, ensuring age and education incre-
mented appropriately between years, and citizenship wasn’t
lost), and the algorithm prioritized matches with similar in-
comes and geographic locations. These simulated individu-
als capture the general income and population trends of their
geographies, and provide a very realistic challenge in terms
of higher sensitivity marginal queries. However, they may
not reflect fine-grained individual behavior, which is better
addressed in the Taxi problem.

Characteristics: The ACS data is designed to highlight
common properties of real-world survey data that are key
to effective synthetic data generation. Map segments range
from dense and homogeneous to sparse and diverse, and
scoring prioritizes good performance across all conditions.
Demographic and economic shifts in the data are very clear
over the 7 year time-span, which covers a period of signif-
icant urban changes in the United States. Within the data
schema itself, there are hard constraints and tight corre-
lations across time segments and between select features,
which can be leveraged to reduce the data space or used in
post-processing to significantly improve performance.

Chicago Taxi Data The Chicago Taxi data schema has 13
features, a maximum number of 200 records per individual,
21 shifts as time segments, and contains 78 geographic re-
gions per data set.

Processing: The original source data contains a complete
year of data for each taxi driver, resulting in more than 5,000
trip records for most individuals. To reduce difficulty, every
ground truth individual was split into 52 simulated individ-
uals, each containing one continuous week of data (and at
most 200 trips). Because each simulated individual is drawn
directly from a real driver’s data, this problem is designed for
evaluating models that preserve fine-grained distributions of
individual behaviors.

Characteristics: The large number of records per indi-
vidual, large proportion of sparse map segments, and the re-
quirement to maintain correlations between map segments
increase the problem difficulty for differentially private al-
gorithms. However, typical of real-world geographic data,
public information such as the distance between neighbor-
hoods can be leveraged to reduce the problem complexity.
This problem requires generating a realistic distribution of
individual taxi drivers, as well as a realistic distribution of
trips. The data sets are large and relatively rich. Major hol-
idays, universities, airports and major industries, the impact
of historical red-lining, drivers’ preferred shifts and home
regions, rising competition from ride-share apps, and the im-
pact of the Covid-19 pandemic are all visible in the data.



Scoring
In this section, we describe the different scoring methods
used during each sprint. In each case, the score is computed
at least four times and averaged to smooth out the intrinsic
randomness of the generation algorithms.

ACS The score computed during this sprint is a variant of
the k−marginal score introduced in the previous section. In-
stead of computing the k−marginal score over the whole
dataset, the score is computed over each pair of (PUMA,
year). This strategy is aimed at enforcing representation
across geographies.

For future endeavours, we propose to rely on the
k−marginal extension introduced early in this work, i.e., we
propose to compute the k−marginal score on combinations
of features at given years (similar to table 1), instead of fea-
tures. This improvement is more responsive to individual be-
haviors.

Chicago Taxi Data The score of this sprint is the aver-
age between a variant, described below, of the k−marginal
and the Higher-Order Conjunction (HOC) scores. Again,the
k−marginal evaluates the distributional similarity by sets
of columns. Whereas, the HOC evaluates similarity across
linked records, thus considering the fidelity of behavior of
an individual taxis

We also propose to further extend the k−marginal score
to measure individual consistencies, as described above in
the extension of k-marginal to individual longitudinal data.

Challenge and baseline results
The results of the challenge are presented in table 2. Each
score is averaged over 4 runs and remapped from 0 (worse)
to 1000 (best). The ± sign indicates standard deviation. For
comparison, the score of subsampled datasets is presented in
table 3. Note that subsampling a dataset does not provide any
(ϵ, δ) differential privacy guarantee for ϵ < ∞. At the time
of writing this article, several contestants have open-sourced
their submission or provided insights about their techniques
in scientific papers (McKenna, Miklau, and Sheldon 2021;
Li, Zhang, and Wang 2021).

Benchmark wide release
The benchmark, including the datasets and the scoring func-
tions of each challenge, is readily available for all users as
a Python package (sdnist python package 2021). The library
allows differential privacy researchers to evaluate the quality
of their synthetic data against real-life datasets and compare
their results against the top-ranking teams of the challenge.
The package focuses on emphasizing the reproducibility of
each algorithm while progressively incorporating new met-
rics that better capture the subtleties of each dataset and push
the domain of synthetic data generation further.

Roadmap
Although sdnist proposes some standard problems and
some standard synthetic data generators inspired from the
past NIST challenges available as an easy-to-use Python
package, many improvements are to be developed. We plan

Table 2: Challenge results

(a) ACS dataset, k−marginal score

ϵ = 0.1 ϵ = 1 ϵ = 10
Dataset (1) (2) (1) (2) (1) (2)

N - CRiPT 781±2 807±2 851 865±1 893 901
Duke Privacy 796±1 816±3 832 852 881 890
Minutemen 822±1 788±1 825±1 834 873 881

DPSyn 805±3 822±1 818±1 844±1 822 848±1
Jim King 782±2 803±2 790 814 840 846

(b) Taxi dataset, k−marginal score

ϵ = 1 ϵ = 10
Dataset 2016 2020 2016 2020

Minutemen 464±3 455±15 556±5 491±3
N - CRiPT 340±7 437±18 456±2 700±2

DPSyn 344±1 433±3 416±1 464±2
GooseDP-PSA 251±2 382±1 251±1 382±1

(c) Taxi dataset, HOC score

ϵ = 1 ϵ = 10
Dataset 2016 2020 2016 2020
DPSyn 922 942 917 945±1

N-CRiPT 924 872±1 924 880
DP Duke 857±22 982±7 900±27 898±15

Minutemen 931 918 929 817
Jim King 828 845±1 839 885±2

GooseDP-PSA 865 827 864 827

On each table and for each value of ϵ, the left and right
column indicate the score on the public and the private
leaderboard respectively. (1)=NY-PA, (2)=GA-NC-SC

Table 3: Subsampling baseline, k−marginal score

Census Taxi
Fraction (1) (2) 2016 2020

1% 572±1 590±1 547±1 472±1
10% 831 839 721 703
50% 940 944 889 887

to add more problems, more standard models to compare to,
and new metrics to evaluate synthetic data quality. Further-
more, the package will eventually propose empirical differ-
ential privacy evaluation such as those proposed by (Jayara-
man and Evans 2019; Wilson et al. 2019).
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