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Abstract

We introduce a universal framework for characterizing the
statistical efficiency of a statistical estimation problem with
differential privacy guarantees. Our framework, which we
call High-dimensional Propose-Test-Release (HPTR), builds
upon three crucial components: the exponential mechanism
from (McSherry and Talwar 2007), robust statistics, and the
Propose-Test-Release mechanism from (Dwork and Lei 2009).
Gluing all these together is the concept of resilience, which
is central to robust statistical estimation. Resilience guides
the design of the algorithm, the sensitivity analysis, and the
success probability analysis of the test step in Propose-Test-
Release. The key insight is that if we design an exponential
mechanism that accesses the data only via one-dimensional
robust statistics, then the resulting local sensitivity can be
dramatically reduced. Using resilience, we can provide tight
local sensitivity bounds. These tight bounds readily translate
into near-optimal utility guarantees in several cases. We give
a general recipe for applying HPTR to a given instance of a
statistical estimation problem and demonstrate it on canonical
problems of mean estimation, linear regression, covariance
estimation, and principal component analysis. We introduce
a general utility analysis technique that proves that HPTR
nearly achieves the optimal sample complexity under several
scenarios studied in the literature.

1 Introduction
Estimating a parameter of a distribution from i.i.d. samples
is a canonical problem in statistics. For such problems, char-
acterizing the computational and statistical cost of ensuring
differential privacy (DP) has gained significant interest with
the rise of DP as the de facto measure of privacy. This is
spearheaded by exciting and foundational algorithmic ad-
vances, e.g., (Barber and Duchi 2014; Karwa and Vadhan
2017; Kamath et al. 2019; Kamath, Singhal, and Ullman
2020; Cai, Wang, and Zhang 2019). However, the computa-
tional efficiency of these algorithms often comes at the cost
of requiring superfluous assumptions that are not necessary
for statistical efficiency, such as known bounds on the pa-
rameters or knowledge of higher-order moments. Without
such assumptions, the optimal sample complexity remains
unknown even for canonical statistical estimation problems
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under differential privacy. Further, each algorithm needs to be
customized to those assumptions or to the problem instances.

We take an alternative route of focusing only on the statis-
tical cost of differential privacy without concerning computa-
tional efficiency. Our goal is to introduce a general unifying
framework that (i) can be readily applied to each problem in-
stance; (ii) provides a tight characterization of the statistical
complexity involved; and (iii) requires minimal assumptions.
Achieving this goal critically relies on three key ingredients:
the exponential mechanism introduced in (McSherry and Tal-
war 2007), robust statistics, and the Propose-Test-Release
mechanism introduced in (Dwork and Lei 2009). We first
explain these three components of our approach, and next
demonstrate the utility of our proposed framework, which
we call High-dimensional Propose-Test-Release (HPTR), in
canonical example problems of mean estimation, linear re-
gression, covariance estimation, and principal component
analysis.

Exponential mechanism and sensitivity. Differential pri-
vacy (DP) is an agreed upon measure of privacy that pro-
vides plausible deniability to the individual entries. Given
a dataset S of size n and its empirical distribution p̂S =
(1/n)

∑
xi∈S δxi , its neighborhood is defined as NS = {S′ :

|S′| = |S|, dTV(p̂S , p̂S′) ≤ 1/n}, which is a set of datasets
at Hamming distance1 at most one from S and dTV(·) is the
total variation. Plausible deniability is achieved by introduc-
ing the right amount of randomness. A randomized estimator
θ̂(S) is said to be (ε, δ)-differentially private for some target
ε ≥ 0 and δ ∈ [0, 1] if P(θ̂(S) ∈ A) ≤ eεP(θ̂(S′) ∈ A) + δ,
for all neighboring datasets S, S′ and all measurable subset
A ⊆ Rp (Dwork et al. 2006). Consider a binary hypothesis
testing on two hypotheses, H0 : the estimate came from a
dataset S and H1 : the estimate came from a dataset S′ that
is a neighbor of S. The DP condition with sufficiently small
(ε, δ) ensures that an adversary cannot succeed in this test
with high confidence (Kairouz, Oh, and Viswanath 2015),
which provides plausible deniability.

The sensitivity plays a crucial role in designing DP es-
timators. Consider an example of mean estimation, where

1There are two notions of a neighborhood in DP, which are
equally popular. We use the one based on exchanging an entry, but
all the analyses can seamlessly be applied to the one that allows for
insertion and deletion of an entry.



the error is measured in the Mahalanobis distance defined
as Dp(µ̂) = ∥Σ−1/2

p (µ̂ − µp)∥, where µp and Σp are
mean and covariance of the sample generating distribu-
tion p. This is a preferred error metric as it has unit vari-
ance in all directions and is invariant to a linear transfor-
mation of the samples. A corresponding empirical loss is
Dp̂S

(µ̂) = ∥Σ−1/2
p̂S

(µ̂− µp̂S
)∥. The exponential mechanism

from (McSherry and Talwar 2007) produces an (ε, 0)-DP es-
timate µ̂ by sampling from a distribution that approximately
and stochastically minimizes this empirical loss:

µ̂ ∼ 1

Z(S)
e−

ε
2∆Dp̂S

(µ̂) ,

where Z(S) =
∫
exp{−(ε/2∆)Dp̂S

(µ̂)dµ̂. The sensitivity
is defined as ∆ := maxµ̂,S,S′∈NS

|Dp̂S
(µ̂)−Dp̂S′ (µ̂)|. This

is how much influence one data point has on the loss. From
this definition, the (ε, 0)-DP guarantee follows immediately
(e.g., Lemma A.3).

Using the exponential mechanism is crucial in HPTR
for two reasons: adaptivity and flexibility. First, it naturally
adapts to the geometry of the problem, which is encoded in
the loss. For example, a more traditional Gaussian mecha-
nism (Dwork and Roth 2014) needs to estimate Σp privately
in order to add a Gaussian noise tailored to that estimated Σp,
which increases the sample complexity significantly. On the
other hand, the exponential mechanism seamlessly adapts to
Σp without explicitly and privately estimating it. Further, the
exponential mechanism allows us significant flexibility to de-
sign different loss functions, some of which can dramatically
reduce the sensitivity. Discovering such a loss function is the
main focus of this paper.

One major challenge is that the sensitivity is unbounded
when the support of the distribution is unbounded. A common
solution is to privately estimate a bounded domain that the
samples lie in and use it to bound the sensitivity (e.g., (Karwa
and Vadhan 2017; Kamath et al. 2019; Liu et al. 2021)).
We propose a fundamentally different approach using robust
statistics.

Robust statistics and resilience. The resilience proposed
in (Steinhardt, Charikar, and Valiant 2018) plays a critical
role in robust statistics. For the mean, for example, a dataset
S is said to be (α, ρ)-resilient for some α ∈ [0, 1] and ρ > 0
if for all v ∈ Rd with ∥v∥ = 1 and all subset T ⊆ S of size
at least |T | ≥ αn,∣∣ ⟨v, µp̂T

⟩ − ⟨v, µp̂S
⟩
∣∣ ≤ ρ

α
. (1)

A more precise statement is in Definition B.2. This measures
how resilient the empirical mean is to subsampling or dele-
tion of a fraction of the samples. This resilience is a central
concept in robust statistical estimation when a fraction of the
dataset is arbitrarily corrupted by an adversary (Steinhardt,
Charikar, and Valiant 2018; Zhu, Jiao, and Steinhardt 2019).
We show and exploit the fact that resilience is fundamentally
related to the sensitivity of robust statistics.

For each direction v ∈ Rd with ∥v∥ = 1, we construct
a robust mean of a one-dimensional projected dataset, also

known as trimmed mean, Sv = {⟨v, xi⟩ ∈ R}xi∈S , as fol-
lows. For some α ∈ [0, 1/2), remove αn data points cor-
responding to the largest entries in Sv and also remove the
αn smallest entries. The mean of the remaining (1− 2α)n
points is the robust one-dimensional mean, which we denote
by ⟨v, µ(robust)

p̂v
⟩ ∈ R. From the resilience above, we know

that the mean of the removed top part is upper bounded by
⟨v, µp̂S

⟩ + ρ/α. The mean of the removed bottom part is
lower bounded by ⟨v, µp̂S

⟩ − ρ/α. Hence, the effective sup-
port of this robust one-dimensional mean estimator is upper
and lower bounded by the same. This can be readily trans-
lated into a bound in sensitivity of the estimate, ⟨v, µ(robust)

p̂v
⟩

(e.g., Lemma B.11). A similar sensitivity bound holds for
robust one-dimensional variance estimator, v⊤Σ(robust)

p̂v
v,

defined similarly.
We propose an approach that critically relies on this ob-

servation that one-dimensional robust statistics have low
sensitivity on resilient datasets, i.e., datasets satisfying the
resilience property with small ρ.

This suggests that if we can design a score function that
only depends on one-dimensional robust statistics of the data,
it might inherit the low sensitivity of those robust statistics.
To this end, we first transform the target error metric into an
equivalent expression that only depends on one-dimensional
(population) mean, ⟨v, µp⟩, and variance, v⊤Σpv, i.e.,

∥Σ−1/2
p (µ̂− µp)∥ = max

v∈Rd,∥v∥=1

⟨v, µ̂⟩ − ⟨v, µp⟩√
v⊤Σp v

,

which follows from Lemma B.1. Next, we replace the pop-
ulation statistics with robust empirical ones to define a
new empirical loss, Dp̂S

(µ̂) = maxv∈Rd,∥v∥=1(⟨v, µ̂⟩ −

⟨v, µ(robust)
p̂v

⟩)/
√
v⊤Σ

(robust)
p̂v

v. Precise definitions of these
robust statistics can be found in Eq. (5). For resilient datasets,
such a score function has a dramatically smaller sensitivity
compared to those that rely on high-dimensional robust statis-
tics. For mean estimation under a sub-Gaussian distribution,
the sensitivity of the proposed loss is Õ(1/n), whereas a
loss using a high-dimensional robust statistics has Ω(

√
d/n)

sensitivity.
Such an improved sensitivity immediately leads to a better

utility guarantee of the exponential mechanism. We explicitly
prescribe such loss functions for the canonical problems of
mean estimation, linear regression, covariance estimation,
and principal component analysis. This leads to near-optimal
utility in most cases and improves upon the state-of-the-art
in others, as we demonstrate in Section 1.1. Further, this ap-
proach can potentially be more generally applied to a much
broader class of problems. One remaining challenge is that
the tight sensitivity bound we provide holds only for a re-
silient dataset. To reject bad datasets, we adopt the Propose-
Test-Release (PTR) framework pioneered in the seminal work
of (Dwork and Lei 2009).

Propose-Test-Release and local sensitivity. The tight sensi-
tivity bound we provide on the proposed exponential mech-
anism is local in the sense that it only holds for resilient
datasets. However, differential privacy must be guaranteed



for any input, whether it is resilient (with desired level of α
and ρ) or not. We adopt Propose-Test-Release introduced in
(Dwork and Lei 2009) to handle such locality of sensitivity.
In the first step, one proposes an upper bound on the sensi-
tivity of the loss DS(θ̂), determined by the resilience of the
dataset, which in turn is determined solely by the distribution
family of interest and the target error rate. In the second step,
one tests if the combination of the given dataset S, sensitivity
bound ∆, and the exponential mechanism with loss DS(θ̂)
satisfy the DP conditions. A part of the privacy budget is
used to test this in a differential private manner, such that
the subsequent exponential mechanism can depend on the
result of this test, i.e., we only proceed to the third step if S
passes the test. Otherwise, the process stops and outputs a
predefined symbol, ⊥. In the third step, one releases the DP
estimate via the exponential mechanism. This ensures DP for
any input S. We are adopting the Propose-Test-Release mech-
anism pioneered in (Dwork and Lei 2009), which we explain
in detail in Appendix A. The resulting framework, which
we call High-dimensional Propose-Test-Release (HPTR) is
provided in Section 1.2.

Contributions. We introduce a novel (computationally inef-
ficient) algorithm for differentially private statistical estima-
tion, with the goal of characterizing the achievable sample
complexity for various problems with minimal assumptions.
The proposed framework, which we call High-dimensional
Propose-Test-Release (HPTR), makes a fundamental connec-
tion between differential privacy and robust statistics, thus
achieving a sample complexity that significantly improves
upon other state-of-the-art approaches. HPTR is a generic
framework that can be seamlessly applied to various statisti-
cal estimation problems, as we demonstrate for mean estima-
tion, linear regression, covariance estimation, and principal
component analysis. Further, our analysis technique, which
requires minimal assumptions, also seamlessly generalizes
to all problem instances of interest.

HPTR uses three crucial components: the exponential
mechanism, robust statistics, and the Propose-Test-Release
mechanism from (Dwork and Lei 2009). Building upon the
inherent adaptivity and flexibility of the exponential mecha-
nism, we propose using a novel loss function (also called a
score function in a typical design of exponential mechanisms)
that accesses the data only via one-dimensional robust statis-
tics. The use of 1-D robust statistics is critical, because it
dramatically reduces the sensitivity. We prove this sensitivity
bound using the fundamental concept of resilience, which
is central in robust statistics. This novel robust exponential
mechanism is incorporated within the PTR framework to
ensure that differential privacy is guaranteed on all input
datasets, including those that are not necessarily compliant
with the statistical assumptions. One byproduct of using ro-
bust statistics is that robustness comes for free. HPTR is
inherently robust to adversarial corruption of the data and
achieves the optimal robust error rate under standard data
corruption models.

We present informal version of our main theoretical re-
sults in Section 1.1. We present HPTR algorithm in detail
in Section 1.2. Detailed explanations of the setting, main

results, and the proofs for each instance of the problems are
presented in Appendices B–E for mean estimation, linear
regression, covariance estimation, and principal component
analysis, respectively.

Notations. Let [n] = {1, 2, . . . , n}. For x ∈ Rd, we use
∥x∥ = (

∑
i∈[d](xi)

2)1/2 to denote the Euclidean norm. For
X ∈ Rd1×d2 , we use ∥X∥ = max∥v∥2=1 ∥Xv∥2 to denote
the spectral norm. The d×d identity matrix is Id×d. The Kro-
necker product is denoted by x⊗y for x ∈ Rd1 and y ∈ Rd2 ,
such that (x ⊗ y)(i−1)d+j = xiyj for i ∈ [d1] and j ∈ [d2].
Whenever it is clear from context, we use S to denote both
a set of data points and also the set of indices of those data
points. We use S ∼ S′ to denote that two datasets S, S′ of
size n are neighbors, such that dTV(p̂S , p̂S′) ≤ 1/n where
dTV(·) is the total variation and p̂S is the empirical distribu-
tion of the data points in S. We use µ(S) and Σ(S) to denote
mean and covariance of the data points in a dataset S, respec-
tively. We use µp and Σp to denote mean and covariance of
the distribution p.

1.1 Main results and related work
For each canonical problem of interest in statistical estima-
tion, HPTR can readily be applied to, in most cases, signifi-
cantly improve upon known achievable sample complexity.
Most of the lower bounds we reference are copied in Ap-
pendix H for completeness.

DP mean estimation We apply our proposed HPTR frame-
work to the standard DP mean estimation problem, where
i.i.d. samples S = {xi ∈ Rd}ni=1 are drawn from a distri-
bution Pµ,Σ with an unknown mean µ (which corresponds
to θ in the general notation) and an unknown covariance
Σ ≻ 0, and we want to produce a DP estimate µ̂ of the mean.
The resulting error is measured in Mahalanobis distance,
DPµ,Σ

(µ̂) = ∥Σ−1/2(µ̂− µ)∥, which is scale-invariant and
naturally captured the uncertainty in all directions.

This problem is especially challenging as we aim for a
tight guarantee that adapts to the unknown Σ as measured in
the Mahalanobis distance without enough samples to directly
estimate Σ as we explain below. Despite being a canonical
problem in DP statistics, the optimal sample complexity is
not known even for standard distributions: sub-Gaussian and
heavy-tailed distributions. We characterize the optimal sam-
ple complexity of the two problems by providing the guar-
antee of HPTR and the matching sample complexity lower
bounds. A precise definition of sub-Gaussian distributions is
provided in Eq. (21).
Theorem 1 (DP sub-Gaussian mean estimation algorithm,
Corollary B.13 informal). Consider a dataset S = {xi ∈
Rd}ni=1 of n i.i.d. samples from a sub-Gaussian distribu-
tion with mean µ and covariance Σ. There exists an (ε, δ)-
differentially private algorithm µ̂(S) that given

n = Õξ,ζ

( d

ξ2
+

d

εξ

)
,

achieves Mahalanobis error ∥Σ−1/2(µ̂(S)− µ)∥ ≤ ξ with
probability 1 − ζ, where Õξ,ζ hides the logarithmic depen-
dency on ξ, ζ and we assume δ = e−O(d).



HPTR is the first algorithm for sub-Gaussian mean estima-
tion with unknown covariance that matches the best known
sample complexity lower bound of n = Ω̃(d/ξ2 + d/(ξε))
from (Karwa and Vadhan 2017; Kamath et al. 2019) up to
logarithmic factors in error ξ and failure probability ζ. Ex-
isting algorithms are suboptimal as they require either larger
sample size or strictly Gaussian assumptions.

Advances in DP mean estimation started with computa-
tionally efficient approaches of (Karwa and Vadhan 2017;
Kamath et al. 2019; Barber and Duchi 2014). We discuss
the results as follows, and omit the polynomial factors in
log(1/δ). When the covariance Σ is known, Mahalanobis
error ξ can be achieved with n = Õ(d/ξ2+d/(ξε)) samples.
Under a relaxed assumption that Id×d ⪯ Σ ⪯ κId×d with
a known κ, n = Õ(d/ξ2 + d/(ξε) + d1.5/ε) samples are
required using a specific preconditioning approach tailored
for the assumption and the knowledge of κ. For general un-
known Σ,O(d2/ξ2+d2/(ξε)) samples are required using an
explicit DP estimation of the covariance. Empirically, further
gains can be achieved with CoinPress (Biswas et al. 2020).

Computationally inefficient approaches followed with a
goal of identifying the fundamental optimal sample com-
plexity with minimal assumptions (Bun et al. 2019; Aden-
Ali, Ashtiani, and Kamath 2020). For the unknown covari-
ance setting, the best known result under Mahalanobis er-
ror is achieved by (Brown et al. 2021). Through analyz-
ing the differentially private Tukey median estimator in-
troduce in (Liu et al. 2021), (Brown et al. 2021) shows
that n = Õ(d/ξ2 + d/(ξε)) is sufficient even when the
covariance is unknown. However, the approach heavily re-
lies on the assumption that the distribution is strictly Gaus-
sian. For sub-Gaussian distributions, (Brown et al. 2021)
proposes a different approach achieving sample complex-
ity of n = Õ(d/ξ2 + d/(ξε2)) samples with a sub-optimal
(1/ε2) dependence.

Beyond the sub-Gaussian setting, it is natural to con-
sider the DP mean estimation for distributions with heavier
tails. We apply HPTR framework to the more general mean
estimation problems for hypercontractive distributions. A
distribution Pµ,Σ with mean µ and covariance Σ is (κ, k)-
hypercontractive if for all v ∈ Rd, Ex∼PX

[|⟨v, (x−µ)⟩|k] ≤
κk(v⊤Σv)k/2. The assumption of hypercontractivity is sim-
ilar to the bounded k-th moment assumptions, except re-
quiring an additional lower bound on the covariance. This
additional assumption is necessary for our setting to make
sure the Mahalanobis error guarantee is achievable. We state
our main result for hypercontractive mean estimation as fol-
lows. For simplicity of the statement, we assume k, κ are
constants.
Theorem 2 (DP hypercontractive mean estimation algorithm,
Corollary B.16 informal). Consider a dataset S = {xi ∈
Rd}ni=1 of n i.i.d. samples from a (κ, k)-hypercontractive
distribution with mean µ and covariance Σ. There exists an
(ε, δ)-differentially private algorithm µ̂(S) that given

n = Õd

( d
ξ2

+
d

εξ1+1/(k−1)

)
,

achieves Mahalanobis error ∥Σ−1/2(µ̂(S)− µ)∥ ≤ ξ with

probability at least 0.99, where Õd hides a logarithmic factor
on d, and we assumes δ = e−O(d).

We prove an n = Ω(d/εξ1+1/(k−1)) sample complexity
lower bound for hypercontractive DP mean estimation in
Proposition B.18 to show the optimality of our upper bound
result. Notice that the first term Õd(d/ξ

2) in the upper bound
cannot be improved up to logarithmic factors even if we do
not require privacy, thus HPTR is the first algorithm that
achieves optimal sample complexity for hypercontractive
mean estimation under Mahalanobis distance up to logarith-
mic factors in d. When the covariance is known, an exist-
ing DP mean estimator of (Kamath, Singhal, and Ullman
2020) achieves a stronger (ε, 0)-DP with a similar sample
size of n = Õ(d/ξ2 + d/(εξ1+1/(k−1))), and no prior result
is known for the unknown covariance case.

DP linear regression We apply HPTR framework to DP
linear regression. Given i.i.d. samples S = {(xi, yi)}i∈[n]

from a distribution Pβ,Σ,γ2 of a linear model: yi = x⊤i β+ηi,
where the input xi ∈ Rd has zero mean and covariance Σ
and the noise ηi ∈ R has variance γ2 satisfying E[xiηi] = 0,
the goal of DP linear regression is to output a DP estimate
β̂ of the unknown model parameter β, without knowledge
about the covariance Σ. The resulting error is measured in
DPβ,Σ,γ2 (β̂) = (1/γ)∥Σ1/2(β̂ − β)∥ which is equivalent to

the standard root excess risk of the estimated predictor β̂.
Similar to Mahalanobis distance for mean estimation, this
is challenging as we aim for a tight guarantee that adapts to
the unknown Σ without having enough samples to directly
estimate Σ.

Theorem 3 (DP sub-Gaussian linear regression, Corol-
lary C.16 informal). Consider a dataset S = {(xi, yi)}ni=1

generated from a linear model yi = x⊤i β + ηi for some
β ∈ Rd, where {xi}i∈[n] are i.i.d. sampled from zero-mean
d-dimensional sub-Gaussian distribution with unknown co-
variance Σ, and {ηi}i∈[n] are i.i.d. sampled from zero mean
one-dimensional sub-Gaussian with variance γ2. We further
assume the data xi and the noise ηi are independent. There
exists a (ε, δ)-differentially private algorithm β̂(S) that given

n = Õξ,ζ

( d

ξ2
+

d

εξ

)
,

achieves error (1/γ)∥Σ1/2(β̂(S)−β)∥ ≤ ξ with probability
1− ζ, where Õξ,ζ hides the logarithmic dependency on ξ, ζ
and we assume δ = e−O(d).

HPTR is the first algorithm for sub-Gaussian distributions
with an unknown covariance Σ that up to logarithmic factors
matches the lower bound of n = Ω̃(d/ξ2+d/(ξε)) assuming
ε < 1 and δ < n−1−ω for some ω > 0 from (Cai, Wang,
and Zhang 2019, Theorem 4.1). An existing algorithm for
DP linear regression from (Cai, Wang, and Zhang 2019) is
suboptimal as it require Σ to be close to the identity matrix,
which is equivalent to assuming that we know Σ. (Dwork
and Lei 2009) proposes to use PTR and B-robust regression
algorithm from (Hampel et al. 1986) for differentially private



linear regression under i.i.d. data assumptions (also expo-
nential time), but only asymptotic consistency is proven as
n→ ∞. Under an alternative setting where the data is deter-
ministically given without any probabilistic assumptions, sig-
nificant advances in DP linear regression has been made (Vu
and Slavkovic 2009; Kifer, Smith, and Thakurta 2012; Mir
2013; Dimitrakakis et al. 2014; Bassily, Smith, and Thakurta
2014; Wang, Fienberg, and Smola 2015; Foulds et al. 2016;
Minami et al. 2016; Wang 2018; Sheffet 2019). The state-of-
the-art guarantee is achieved in (Wang 2018; Sheffet 2019)
which under our setting translates into a sample complexity
of n = O(d1.5/(ξε)). The extra d1/2 factor is due to the
fact that no statistical assumption is made, and cannot be im-
proved under the deterministic setting (not necessarily i.i.d.)
that those algorithms are designed for.

Similar to mean estimation, we also consider the DP lin-
ear regression for distributions with heavier tails, and apply
HPTR framework to the linear regression problem under
(k, κ)-hypercontractive distributions (see Definition B.14).
HPTR can handle both independent and dependent noise,
and we state the independent noise case here the dependent
noise case in Appendix C.3. For simplicity of the statement,
we assume k, κ are constants.

Theorem 4 (DP hypercontractive linear regression with inde-
pendent noise, Corollary C.18 informal). Consider a dataset
S = {(xi, yi)}ni=1 generated from a linear model yi =
x⊤i β+ηi for some β ∈ Rd, where {xi}i∈[n] are i.i.d. sampled
from zero-mean d-dimensional (κ, k)-hypercontractive distri-
bution with unknown covariance Σ and ηi are i.i.d. sampled
from zero mean one-dimensional (κ, k)-hypercontractive dis-
tribution with variance γ2. We further assume the data xi and
the noise {ηi}i∈[n] are independent. There exists an (ε, δ)-
differentially private algorithm β̂(S) that given

n = Õd

( d

ξ2
+

d

εξ1+1/(k−1)

)
,

achieves error (1/γ)∥Σ1/2(β̂(S)−β)∥ ≤ ξ with probability
0.99, where Õd hides a logarithmic factor on d, and we
assume δ = e−O(d).

The first term in the sample complexity cannot be im-
proved as it matches the classical lower bound of linear re-
gression even without privacy constraint. For the second term,
the sub-Gaussian lower bound of n = Ω̃(d/(εξ)) from (Cai,
Wang, and Zhang 2019, Theorem 4.1) continues to hold in the
hypercontractive setting. We do not have a matching lower
bound for the second term. To the best of our knowledge,
HPTR is the first algorithm for linear regression that guar-
antees (ε, δ)-DP under hypercontractive distributions with
independent noise.

When applied to the setting where noise ηi is dependent
on the input vector xi, HPTR is the first algorithm for linear
regression that guarantees (ε, δ)-DP. We refer the readers to
Appendix C.3 for more detailed description of our result.

DP covariance estimation We present HPTR applied to
covariance estimation from i.i.d. samples under a Gaussian
distribution N (0,Σ). The main reason for this choice is that

the Mahalanobis error ∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F of the Kro-
necker product xi⊗xi is proportional to the natural error met-
ric of total variation for Gaussian distributions. The strength
of HPTR framework is that it can be seamlessly applied to
general distributions, for example sub-Gaussian or heavy-
tailed, but the resulting Mahalanobis error becomes harder to
interpret as it involves respective fourth moment tensors.

Theorem 5 (DP Gaussian covariance estimation, Corol-
lary D.9 informal). Consider a dataset S = {xi}ni=1
of n i.i.d. samples from N (0,Σ). There exists a (ε, δ)-
differentially private estimator Σ̂ that given

n = Õξ,ζ

( d2
ξ2

+
d2

ξε

)
,

achieves error ∥Σ−1/2Σ̂Σ−1/2− Id×d∥F ≤ ξ with probabil-
ity 1 − ζ, where Õξ,ζ hides the logarithmic dependency on
ξ, ζ and we assume δ = e−O(d).

This Mahalanobis distance guarantee (for the Kronecker
product, {xi ⊗ xi}, of the samples) implies that the es-
timated Gaussian distribution is close to the underlying
one in total variation distance (see for example (Kamath
et al. 2019, Lemma 2.9)): dTV(N (0, Σ̂),N (0,Σ)) =

O(∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F ) = O(ξ). The sample com-
plexity is near-optimal, matching a lower bound of n =
Ω(d2/ξ2+min{d2, log(1/δ)}/(εξ)) up to a logarithmic fac-
tor when δ = e−Θ(d). The first term follows from the clas-
sical estimation of the covariance without DP. The second
term follows from extending the lower bound in (Kamath
et al. 2019) constructed for pure differential privacy with
δ = 0 and matches the second term in our upper bound when
δ = e−Θ(d2). We note that a similar upper bound is achieved
by the state-of-the-art (computationally inefficient) algorithm
in (Aden-Ali, Ashtiani, and Kamath 2020), which improves
over HPTR in the lower order terms not explicitly shown in
this informal version of our theorem. Both HPTR and (Aden-
Ali, Ashtiani, and Kamath 2020; Amin et al. 2019) improve
upon computationally efficient approaches of (Karwa and
Vadhan 2017; Kamath et al. 2019) which require additional
assumption that Id×d ⪯ Σ ⪯ κId×d with a known κ.

DP principal component analysis We apply HPTR to the
task of estimating the top PCA direction from i.i.d. samples

Theorem 6 (DP sub-Gaussian principle component analy-
sis, Corollary E.5). Consider a dataset S = {xi ∈ Rd}ni=1
of n i.i.d. samples from a zero-mean sub-Gaussian distri-
bution with unknown covariance Σ. There exists an (ε, δ)-
differentially private estimator û that given

n = Õξ,ζ

( d

ξ2
+

d

εξ

)
,

achieves error 1− û⊤Σû
∥Σ∥ ≤ ξ with probability 1− ζ, where

Õξ,ζ hides the logarithmic dependency on ξ, ζ and we assume
δ = e−O(d).

HPTR is the first estimator for sub-Gaussian distributions
to nearly match the information-theoretic lower bound of



n = Ω(d/ξ2 + min{d, log(1/δ)}/(εξ)) as we showed in
Proposition E.6. The first term Ω(d/ξ2) is unavoidable even
without DP (Proposition E.7). The second term in the lower
bound follows from Proposition E.6, which matches the sec-
ond term in the upper bound when δ = e−Θ(d). Existing DP
PCA approaches from (Blum et al. 2005; Chaudhuri, Sarwate,
and Sinha 2013; Kapralov and Talwar 2013; Dwork et al.
2014; Hardt and Roth 2012, 2013; Hardt 2013) are designed
for arbitrary samples not necessarily drawn i.i.d. and hence re-
quire a larger samples size of n = Õ(d/ξ2+d1.5/(ξε)). This
is also unavoidable for more general deterministic data, as it
matches an information theoretic lower bound (Dwork et al.
2014) under weaker assumptions on the data than i.i.d. Gaus-
sian.
Theorem 7 (DP hypercontractive principle component analy-
sis, Corollary E.10). Consider a dataset S = {xi ∈ Rd}ni=1
of n i.i.d. samples from a zero-mean (κ, k)-hypercontractive
distribution with unknown covariance Σ. There exists an
(ε, δ)-differentially private estimator û that given

n = Õξ,d

( d

ξ(2k−2)/(k−2)
+

d

εξ1+2/(k−2)

)
,

achieves error 1 − û⊤Σû
∥Σ∥ ≤ ξ with probability 0.99, where

Õξ,d hides the logarithmic dependency on ξ, d and we assume
δ = e−O(d).

HPTR is the first estimator for hypercontrac-
tive distributions to guarantee differential privacy
for PCA with sample complexity scaling as O(d).
As a complement of our algorithm, we proved a
n = Ω(d/ξ2 + min{d, log(1/δ)}/(ξ1+2/(k−2)ε))
information-theoretic lower bound in Proposition E.11. The
first term Ω(d/ξ2) in the lower bound is needed even without
DP, and there is a gap of factor O(ξ−2/(k−2)) compared to
the first term in our upper bound. The second term in the
lower bound matches the last term in the upper bound when
δ = e−Θ(d).

1.2 Algorithm
The proposed High-dimensional Propose-Test-Release
(HPTR) is not computationally efficient, as the TEST step
requires enumerating over a certain neighborhood of the in-
put dataset and the RELEASE step requires enumerating over
all directions in high dimension. The strengths of HPTR is
that (i) the same framework can be seamlessly applies to
many problems as we demonstrate in Appendices B–E; (ii)
a unifying recipe can be applied for all those instances to
give tight utility guarantees as we explicitly prescribe in Sec-
tion 1.2; and (iii) the algorithm is simple and the analysis is
clear such that it is transparent how the distribution family of
interest translates into the utility guarantee (via resilience).

As a byproduct of the simplicity of the algorithm and clar-
ity of the analysis, we achieve the state-of-the-art sample
complexity for all those problem instances with minimal
assumptions, oftentimes nearly matching the information the-
oretic lower bounds. As a byproduct of the use of robust
statistics, we guarantee robustness against adversarial corrup-
tion for free (e.g., Theorems 10, 12, 14).

We describe the framework for general statistical estima-
tion problem where data is drawn i.i.d. from a distribution
represented by two unknown parameters θ ∈ Rp and ϕ
and is coming from a known family of distributions. An
example of a problem instance of this type would be mean
estimation from heavy-tailed distributions that are (κ, k)-
hypercontractive with unknown mean µ (which in the general
notation is θ) and unknown covariance Σ (which corresponds
to ϕ).

The main component is an exponential mechanism in RE-
LEASE step below that uses a loss function DS(θ̂) and a
support Bτ,S defined as

Bτ,S = {θ̂ ∈ Rp : DS(θ̂) ≤ τ} .

Bounding the support of the exponential mechanism is im-
portant since the sensitivity also depends on θ̂ in many prob-
lems of interest. We discuss this in detail in the example of
mean estimation in Appendix B.2. The specific choices of the
threshold τ only depends on the tail of the distribution family
of interest and not the parameters θ or ϕ or the data. In partic-
ular, we use the resilience property of the distribution family
to prescribe the choice of τ for each problem instance that
gives us the tight utility guarantees. As explained in Section 1,
we use one-dimensional robust statistics to design the loss
functions, which we elaborate for each problem instances
in Appendices B–E, where we also explain how to choose
the sensitivity for each case based on the resilience of the
distribution family only.

After we PROPOSE the choice of the sensitivity ∆ and
threshold τ for the problem instance in hand, we TEST to
make sure that the given dataset S is consistent with the as-
sumptions made when selecting DS(θ̂), ∆, and τ . This is
done by testing the safety of the exponential mechanism, by
privately checking the margin to safety, i.e., how many data
points need to me changed from S for the exponential mech-
anism to violate differential privacy conditions. If the margin
is large enough, HPTR proceeds to RELEASE. Otherwise, it
halts and outputs ⊥. A set of such unsafe datasets is defined
as

UNSAFE(ε,δ,τ) =
{
S′ ⊆ Rd×n | ∃S′′ ∼ S′ and ∃E ⊆ Rp

such that Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E) > eεPθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E) + δ

or Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) > eεPθ̂∼r(ε,∆,τ,S′′)

(θ̂ ∈ E) + δ
}
,

(2)

where r(ε,∆,τ,S) denotes the pdf of the exponential mecha-
nism in Eq. (3). Given a loss (or a distance) function, DS(θ̂),
which is a surrogate for the target measure of error, Dϕ(θ̂, θ),
High-dimensional Propose-Test-Release (HPTR) proceeds
as follows:

1. Propose: Propose a target bound ∆ on local sensitivity
and a target threshold τ for safety.

2. Test:
2.1. Compute the safety margin mτ = minS′ dH(S, S′)

such that S′ ∈ UNSAFE(ε/2,δ/2,τ).



2.2. If m̂τ = mτ+Lap(2/ε) < (2/ε) log(2/δ) then output
⊥, and otherwise continue.

3. Release: Output θ̂ sampled from a distribution with a pdf:

r(ε,∆,τ,S)(θ̂) =

{
1
Z exp

{
− ε

4∆DS(θ̂)
}

if θ̂ ∈ Bτ,S ,

0 otherwise,
(3)

where Z =
∫
Bτ,S

exp{−(εDS(θ̂))/(4∆)}dθ̂.

It is straightforward to show that (ε, δ)-differential privacy
is satisfied for all input S.

Theorem 8. For any dataset S ⊂ Xn, distance function
DS : Rp → R on that dataset, and parameters ε, δ,∆ and τ ,
HPTR is (ε, δ)-differentially private.

Proof. The differentially private margin m̂τ is (ε/2, 0)-
differentially private, because the sensitivity of the margin is
one and we are adding a Laplace noise with parameter 2/ε.
The TEST step (together with the exponential mechanism)
is (0, δ/2)-differentially private as there is a probability δ/2
event that a unsafe dataset S with a small margin mτ is
classified as a safe dataset and passes the test. On the compli-
mentary event that the dataset that passed the TEST is indeed
safe, the RELEASE step is (ε/2, δ/2)-differentially private as
we use UNSAFE(ε/2,δ/2,τ) in the TEST step.

Utility analysis of HPTR for statistical estimation We
prescribe the following three-step recipe as a guideline for
applying HPTR to each specific statistical estimation problem
and obtaining a utility guarantee. Consider a problem of
estimating an unknown θ from samples from a generative
model Pθ,ϕ where the error is measured in Dϕ(θ̂, θ).

• Step 1: Design a surrogate DS(θ̂) for the target error met-
ric Dϕ(θ̂, θ) using only one-dimensional robust statistics
on S.

• Step 2: Assuming resilience of the dataset, propose an
appropriate sensitivity bound ∆ and threshold τ , and ana-
lyze the utility of HPTR.

• Step 3: For each specific family of generative models
Pθ,ϕ with a known tail bound, characterize the resulting
resilience and substitute it in the utility analysis from the
previous step, which gives the final guarantee.

We demonstrate how to apply this recipe and carry out the
utility analysis for mean estimation (Appendix B), linear
regression (Appendix C), covariance estimation (Appendix
D), and PCA (Appendix E). We explain and justify the use of
one-dimensional robust statistics in Step 1 and the assumption
on the resilience of the dataset in Step 2 in the next section
using the mean estimation problem as a canonical example.
It is critical to construct DS(θ̂) using only one-dimensional
and robust statistics; this ensures that DS(θ̂) has a small
sensitivity as demonstrated in Appendix B.1. We prove error
bounds only assuming resilience of the dataset; this relies on
a fundamental connection between sensitivity and resilience
as explained in Appendix B.2.

2 Conclusion
We provide a universal framework for characterizing the sta-
tistical efficiency of statistical estimation problems with dif-
ferential privacy guarantees. Our framework, which we call
High-dimensional Propose-Test-Release (HPTR), is compu-
tationally inefficient and builds upon three key components:
the exponential mechanism, robust statistics, and the Propose-
Test-Release mechanism. The key insight is that if we design
an exponential mechanism that accesses the data only via
one-dimensional robust statistics, then the resulting local sen-
sitivity can be dramatically reduced. Using resilience, which
is a central concept in robust statistics, we can provide tight
local sensitivity bounds. These tight bounds readily trans-
late into near-optimal utility guarantees in several statistical
estimation problems of interest: mean estimation, linear re-
gression, covariance estimation, and principal component
analysis. Although our framework is written as a conceptual
algorithm without a specific implementation, it is possible
to implement it with exponential computational complexity
following the guidelines of (Brown et al. 2021) where a simi-
lar exponential mechanism with PTR was proposed and an
implementation was explicitly provided.

To protect against membership inference attacks, signif-
icant progress was made in training differentially private
models that are practical (Abadi et al. 2016; Yu et al. 2021;
Anil et al. 2021). To protect against data poisoning attacks,
a recent work utilizes robust statistics with a great success
(Hayase et al. 2021). In practice, however, we need to pro-
tect against both types of attacks, to facilitate learning and
analysis from shared data. Currently, there is an algorithmic
deficiency in this space. Efficient algorithms achieving both
differential privacy and robustness against adversarial corrup-
tion are known only for mean estimation (Liu et al. 2021).
It is an important direction to design such algorithms for a
broad class of problems, including covariance estimation,
principal component analysis, and linear regression.

Further, these computationally efficient algorithms typ-
ically require more samples. For sub-Gaussian mean es-
timation with known covariance Σ, an efficient approach
of (Liu et al. 2021) requires Õ(d/α2 + d3/2/(εα)) sam-
ples under α-corruption and (ε, δ)-DP to achieve an er-
ror of ∥Σ−1/2(µ̂ − µ)∥ = Õ(α). HPTR only requires
O(d/α2 + d/(εα)) samples. It remains an important open
question if this d1/2 gap is fundamental and cannot be im-
proved.
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A Preliminary on differential privacy and Propose-Test-Release
We give the backgrounds on differential privacy and the Propose-Test-Release mechanism. We say two datasets S and S′ of the
same size are neighboring if the Hamming distance between them is at most one. There is another equally popular definition
where injecting or deleting one data point to S is considered as a neighboring dataset. All our analysis generalizes to that
definition also, but notations get slightly heavier.

Definition A.1 ((Dwork et al. 2006)). We say a randomized algorithm M : Xn → Y is (ε, δ)-differentially private if for all
neighboring databases S ∼ S′ ∈ Xn, and all Y ⊆ Y , we have P(M(S) ∈ Y ) ≤ eεP(M(S′) ∈ Y ) + δ.

HPTR relies on the exponential mechanism for its adaptivity and flexibility.

Definition A.2 (Exponential mechanism (McSherry and Talwar 2007)). The exponential mechanism Mexp : Xn → Θ takes
database S ∈ Xn, candidate space Θ, score function DS(θ̂) and sensitivity ∆ as input, and select output with probability
proportional to exp{−εDS(θ̂)/2∆}.

The exponential mechanism is (ε, 0)-DP if the sensitivity of DS(θ̂) is bounded by ∆.

Lemma A.3 ((McSherry and Talwar 2007)). If maxθ̂∈Θ maxS∼S′ |DS(θ̂)−DS′(θ̂)| ≤ ∆, then the exponential mechanism is
(ε, 0)-DP.

Starting from the seminal paper (Dwork and Lei 2009), there are increasing efforts to apply differential privacy to statistical
problems, where the dataset consists of i.i.d. samples from a distribution. There are two main challenges. First, the support is
typically not bounded, and hence the sensitivity is unbounded. (Dwork and Lei 2009) proposed to resolve this by using robust
statistics, such as median to estimate the mean. The second challenge is that while median is quite insensitive on i.i.d. data, this
low sensitivity is only local and holds only for i.i.d. data from a certain class of distributions. This led to the original definition of
local sensitivity in the following.

Definition A.4 (Local Sensitivity). We define local sensitivity of dataset S ∈ Xn and function f : Xn → R as ∆f (S) :=
maxS′∼S |f(S)− f(S′)|.

(Dwork and Lei 2009) introduced Propose-Test-Release mechanism to resolve both issues. First, a certain robust statistic f(S),
such as median, mode, Inter-Quantile Range (IQR), or B-robust regression model (Hampel et al. 1986) is chosen as a query. It
can be to approximate a target statistic of interest, such as mean, range, or linear regression model, or the robust statistic itself
could be the target. Then, the PTR mechanism proceeds in three steps. In the propose step, a local sensitivity ∆ is proposed such
that ∆f (S) ≤ ∆ for all S that belongs to a certain family. In the test step, a safety margin m, which is how many data points
have to be changed to violate the local sensitivity, is computed and a private version of the safety margin, m̂, is compared with a
threshold. If the safety margin is large enough, then the algorithm outputs f(S) via a Laplace mechanism with parameter 2∆/ε.
Otherwise, the algorithm halts and outputs ⊥.

Definition A.5 (Propose-Test-Release (PTR) (Dwork and Lei 2009; Vadhan 2017)). For a query function f : Xn → R, the
PTR mechanism MPTR : Xn → R proceeds as follows:

1. Propose: Propose a target bound ∆ ≥ 0 on local sensitivity.
2. Test:
2.1. Compute m = minS′ dH(S, S′) such that local sensitivity of S′ satisfies ∆f (S

′) ≥ ∆.
2.2. If m̂ = m+ Lap(2/ε) < (2/ε) log(1/δ) then output ⊥, and otherwise continue.

3. Release: Output f(S) + Lap(2∆/ε).

It immediately follows that PTR is (ε, δ)-differentially private for any input dataset.

Lemma A.6 ((Dwork and Lei 2009; Vadhan 2017)). MPTR is (ε, δ)-DP

Given a robust statistic of interest, the art is in identifying the family of datasets with small local sensitivity and showing
that the sensitivity is small enough to provide good utility. For example, for privately releasing the mode, for the family of
distributions whose occurrences of the mode is at least (4/ε) log(1/δ) larger than the occurrences of the second most frequent
value, the local sensitivity is zero and PTR outputs the true mode with probability at least 1−δ (Vadhan 2017). Such a specialized
PTR mechanism for zero local sensitivity is also called a stability based method.

In general, a naive method of computing m in the TEST step requires enumerating over all possible databases S ∈ Xn. For
typical one-dimensional data/statistics, for example median estimation, this step can be computed efficiently. This led to a fruitful
line of research in DP statistics on one-dimensional data. (Dwork and Lei 2009; Brunel and Avella-Medina 2020) propose PTR
mechanisms for the range and the median of of a 1-D smooth distribution and (Avella-Medina and Brunel 2019; Avella-Medina
2020; Brunel and Avella-Medina 2020) propose PTR mechanisms that can estimating median and mean of a 1-D sub-Gaussian
distribution. The stability-based method introduced in (Vadhan 2017) can be used to release private histograms, among other
things, which can be subsequently used as a black box to solve several important problems including range estimation of a 1-D
sub-Gaussian distribution (Karwa and Vadhan 2017; Kamath et al. 2019; Liu et al. 2021) or a 1-D heavy-tailed distribution



(Kamath, Singhal, and Ullman 2020; Liu et al. 2021), and general counting queries. PTR and stability-based mechanisms are
powerful tools when estimating robust statistics of a distribution from i.i.d. samples.

Even if computational complexity is not concerned, however, directly applying PTR to high dimensional distributions can
increase the statistical cost significantly, which has limited the application of PTR. One exception is the recent work of (Brown
et al. 2021). For the mean estimation problem with Mahalanobis error metric of ∥Σ−1/2(µ̂ − µ)∥, the private Tukey median
mechanism introduced in (Liu et al. 2021) is studied. One major limitation of the utility analysis is that private Tukey median
requires the support to be bounded. In (Liu et al. 2021), this is circumvented by assuming the covariance Σ is known, in which
case one can find a support with, for example, the private histogram of (Vadhan 2017). Instead, (Brown et al. 2021) proposed
using private Tukey median inside the PTR mechanism and designed an advanced safety test for high-dimensional problems.
This naturally bounds the support that adapts to the geometry of the problem without explicitly and privately estimating Σ.
One notable byproduct of this approach is that the resulting exponential mechanism is no longer pure DP, but rather (ε, δ)-DP.
This is because the resulting exponential mechanism has a support that depends on the dataset S, and hence two exponential
mechanisms on two neighboring datasets have different supports. The limitations of the private Tukey median are that (i) it
requires symmetric distributions, like Gaussian distributions, and do not generalize to even sub-Gaussian distributions, and (ii)
it only works for mean estimation. To handle the first limitation, (Brown et al. 2021) propose another PTR mechanism using
Gaussian noise, which works for more general sub-Gaussian distributions but achieves sub-optimal sample complexity.

HPTR builds upon this advanced PTR with the high-dimensional safety test from (Brown et al. 2021). However, there are
major challenges in applying this safety test to HPTR, which we overcome with the resilience property of the dataset and the
robustness of the loss function. For private Tukey median, the sensitivity is always one for any µ̂ and any S, and the only purpose
of the safety test is to ensure that the support is not too different between two neighboring datasets. For HPTR, the sensitivity is
local in two ways: it requires S to be resilient and the estimate µ̂ to be sufficiently close to µ. To ensure a large enough margin
when running the safety test, HPTR requires this local sensitivity to hold not just for the given S but for all S′ within some
Hamming distance from S. We use the fact that this larger neighborhood is included in an even larger set of databases that are
adversarial corruption of the α-fraction of the original resilient dataset S with a certain choice of α. The robustness of our loss
function implies that the bounded sensitivity is preserved under such corruption of a resilient dataset. This is critical in proving
that a resilient dataset passes the safety test with high probability.

We take a first-principles approach to design a universal framework for DP statistical estimation that blends exponential
mechanism, robust statistics, and PTR. The exponential mechanism in HPTR adopts to the geometry of the problem without
explicitly estimating any other parameters and also gives us the flexibility to apply to a wide range of problems. The choice of the
loss functions that only depend on one-dimensional statistics is critical in achieving the low sensitivity, which directly translates
into near optimal utility guarantees for several canonical problems. Ensuring differential privacy is achieved by building upon the
advanced PTR framework of (Brown et al. 2021), with a few critical differences. Notably, the safety analysis uses the resilience
of robust statistics in a fundamental way.

On the other hand, there is a different way of handling local sensitivity, which is known as smooth sensitivity. Introduced in
(Nissim, Raskhodnikova, and Smith 2007), smooth sensitivity is a smoothed version of local sensitivity on the neighborhood of
the dataset, defined as

∆smooth
f (S) = max

S′∈Xn
{∆f (S

′)e−εdH(S,S′)}

Note that, in general, computing smooth sensitivity is also computationally inefficient with an exception of (Avella-Medina 2021).
Using smooth sensitivity, (Lei 2011; Smith 2011; Chaudhuri and Hsu 2012; Avella-Medina 2021) leverage robust M-estimators
for differentially private estimation and inference. The intuition is based on the fact that the influence function of the M-estimators
can be used to bound the smooth sensitivity. The applications include: linear regression, location estimation, generalized linear
models, private testing. However, these approaches require restrictive assumptions on the dataset that needs to be checked (for
example via PTR) and fine-grained analyses on the statistical complexity is challenging; there is no sample complexity analysis
comparable to ours.

B Mean estimation
In a standard mean estimation, we are given i.i.d. samples S = {xi ∈ Rd}ni=1 drawn from a distribution Pµ,Σ with an unknown
mean µ (which corresponds to θ in the general notation) and an unknown covariance Σ ≻ 0 (which corresponds to ϕ in the general
notation), and we want to produce a DP estimate µ̂ of the mean. The resulting error is best measured in Mahalanobis distance,
DΣ(µ̂, µ) = ∥Σ−1/2(µ̂− µ)∥, because this is a scale-invariant distance; every direction has unit variance after whitening by Σ.

This problem is especially challenging as we aim for a tight guarantee that adapts to the unknown Σ as measured in the
Mahalanobis distance without enough samples to directly estimate Σ (see Section 1.1 for a survey). Despite being a canonical
problem in DP statistics, the optimal sample complexity is not known even for standard distributions: sub-Gaussian and heavy-
tailed distributions. We characterize the optimal sample complexity by showing that HPTR matches the known lower bounds in
Appendix B.3. This follows directly from the general three-step strategy outlined in Section 1.2.



B.1 Step 1: Designing the surrogate DS(µ̂) for the Mahalanobis distance
We want to privately release µ̂ with small Mahalanobis distance ∥Σ−1/2(µ̂− µ)∥. In the exponential mechanism in RELEASE
step, we propose using the surrogate distance,

DS(µ̂) = max
v:∥v∥≤1

⟨v, µ̂⟩ − µv(Mv,α)

σv(Mv,α)
, (4)

where the robust one-dimensional mean µv(Mv,α) and variance σ2
v(Mv,α) are defined as follows. We partition S = {xi}ni=1

into three sets Bv,α, Mv,α, and Tv,α, by considering a set of projected data points Sv = {⟨v, xi⟩}xi∈S and letting Bv,α be
the data points corresponding to the subset of bottom (2/5.5)αn data points with smallest values in Sv, Tv,α be the subset of
top (2/5.5)αn data points with largest values, and Mv,α be the subset of remaining (1− (4/5.5)α)n data points. For a fixed
direction v, define

µv(Mv,α) =
1

|Mv,α|
∑

xi∈Mv,α

⟨v, xi⟩ , and σ2
v(Mv,α) =

1

|Mv,α|
∑

xi∈Mv,α

(⟨v, xi⟩ − µv(Mv,α))
2 , (5)

which are robust estimates of the population projected mean µv = ⟨v, µ⟩ and the population projected variance σ2
v = v⊤Σv.

General guiding principles for designing DS(µ̂). We propose the following three design principles that apply more generally to
all problem instances of interest. The first guideline is that it should recover the target error metric DΣ(µ̂, µ) = ∥Σ−1/2(µ̂− µ)∥
when we substitute the population statistics, e.g. µv and σv for mean estimation, for their robust counterparts: µv(Mv,α) and
σv(Mv,α). This ensures that minimizing DS(µ̂) is approximately equivalent to minimizing the target metric DΣ(µ̂, µ) =

∥Σ−1/2(µ̂− µ)∥ (Lemma B.6). For mean estimation, this equivalence is shown in the following lemma.

Lemma B.1. For any µ ∈ Rd and 0 ≺ Σ ∈ Rd×d, let µv = ⟨v, µ⟩ and σ2
v = v⊤Σv. Then, we have

∥Σ−1/2(µ̂− µ)∥ = max
v:∥v∥≤1

⟨v, µ̂⟩ − µv

σv
.

Proof. Let µ̂ − µ =
∑d

ℓ=1 aℓuℓ with aℓ = ⟨uℓ, µ̂ − µ⟩, ∥a∥ = ∥µ̂ − µ∥ and uℓ’s are the singular vectors of Σ. Similarly, let
v =

∑d
ℓ=1 bℓuℓ with ∥b∥ = 1. Then we have

∥Σ−1/2(µ̂− µ)∥2 =
∑

(a2ℓ/σℓ) and
⟨v, (µ̂− µ)⟩

σv
=

⟨a, b⟩√∑
b2ℓσℓ

.

From Cauchy-Schwarz, we have ⟨a, b⟩2 ≤ (
∑
b2ℓσℓ)(

∑
a2ℓσ

−1
ℓ ), which proves that

∥Σ−1/2(µ̂− µ)∥ ≥ max
v:∥v∥=1

(1/σv)⟨v, (µ̂− µ)⟩ .

To show equality, we find v that makes Cauchy-Schwarz inequality tight. Let v =
∑d

ℓ=1 bℓuℓ with a choice of bℓ =

(1/Z)aℓσ
−1
ℓ and Z =

√∑
ℓ a

2
ℓσ

−2
ℓ . This implies ∥b∥ = 1 and

⟨a, b⟩ =
1

Z

d∑
ℓ=1

(1/σℓ)a
2
ℓ , and

√∑
b2ℓσℓ =

1

Z

√√√√ d∑
ℓ=1

(1/σuℓ
)a2ℓ ,

which implies that there exists a v such that ∥Σ−1/2(µ̂ − µ)∥ = (1/σv)⟨v, µ̂ − µ⟩ and ∥Σ−1/2(µ̂ − µ)∥ ≤
maxv:∥v∥=1(1/σv)⟨v, µ̂− µ⟩.

The second guideline is that DS(µ̂) should depend only on the one-dimensional statistics of the data. This is critical as the
sensitivity of high-dimensional statistics increases with the ambient dimension d. For example, consider using the robust mean
estimate µ̂robust(S) ∈ Rd from (Dong, Hopkins, and Li 2019) and using the Euclidean distance DS(µ̂) = ∥µ̂− µ̂robust(S)∥ in
the exponential mechanism, where we are assuming Σ = I for simplicity. It can be shown that, even for Gaussian distributions,
this requires n = Ω̃(d3/2/(εα) + d/α2) samples to achieve an accuracy ∥µ̂ − µ∥ = Õ(α). This is significantly sub-optimal
compared to what HPTR achieves in Corollary B.13, which leverages the fact that sensitivity of one-dimensional statistic is
dimension-independent.

The last guideline is to use robust statistics. Robust statistics have small sensitivity on resilient datasets, which is critical in
achieving the near-optimal guarantees. We elaborate on it in Appendix B.2.



B.2 Step 2: Utility analysis under resilience
For utility, we prefer smaller ∆ and τ to ensure that the exponential mechanism samples µ̂ closer to the minimum of DS(µ̂) ≈
∥Σ−1/2(µ̂− µ)∥. However, aggressive choices can violate the DP condition and hence fail the safety test. Near-optimal utility
can be achieved by selecting ∆ and τ based on the resilience of the dataset defined as follows.

Definition B.2 (Resilience for mean estimation (Steinhardt, Charikar, and Valiant 2018; Zhu, Jiao, and Steinhardt 2019)). For
some α ∈ (0, 1), ρ1 ∈ R+, and ρ2 ∈ R+, we say a set of n data points Sgood is (α, ρ1, ρ2)-resilient with respect to (µ,Σ) if for
any T ⊂ Sgood of size |T | ≥ (1− α)n, the following holds for all v ∈ Rd with ∥v∥ = 1:∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩ − µv

∣∣∣ ≤ ρ1 σv , and (6)

∣∣∣ 1

|T |
∑
xi∈T

(
⟨v, xi⟩ − µv

)2 − σ2
v

∣∣∣ ≤ ρ2 σ
2
v , (7)

where µv = ⟨v, µ⟩ and σ2
v = v⊤Σv.

Originally, resilience is introduced in the context of robust statistics. Resilience measures how sensitive the sample statistics are
to removing an α-fraction of the data points. A dataset from a distribution with a lighter tail has smaller resilience (ρ1, ρ2). For
example, sub-Gaussian distributions have ρ1 = O(α

√
log(1/α)) and ρ2 = O(α log(1/α)) (Lemma B.12), which is smaller than

the resilience of heavy-tailed distributions with bounded k-th moment, i.e. ρ1 = O(α1−1/k) and ρ2 = O(α1−2/k) (Lemma B.15).
Resilience plays a crucial role in robust statistics, where the resilience of a dataset determines the minimax sample complexity of
estimating population statistics from adversarially corrupted samples (Steinhardt, Charikar, and Valiant 2018; Zhu, Jiao, and
Steinhardt 2019).

In the context of differential privacy, our design of HPTR is guided by our analysis showing that the sensitivity of one-
dimensional robust statistics is fundamentally governed by resilience. Leveraging this three-way connection between the use of
robust statistics in the algorithm, the resilience of the data, and the sensitivity of the distance DS(µ̂) is crucial in achieving the
near-optimal utility.

Concretely, we consider α as a free parameter that we can choose depending on the target accuracy. For example, let
∥Σ−1/2(µ̂− µ)∥ = 32ρ1 be our target accuracy. Note that we did not optimize the constants in our analysis and they can be
further tightened. In the case of sub-Gaussian distributions, we have ρ1 = C ′α

√
log(1/α) w.h.p. when the sample size is large

enough. This determines the value of α that achieves a target accuracy and also the choice of ∆ and τ as follows.
The robust statistics of a resilient dataset (i.e., one with small resilience) cannot change too much when a small fraction of

the dataset is changed. This is made precise in Lemma B.11 which shows, for example, that the robust mean µv(Mv,α) can
only change by O(ρ1/(αn)) when one data point is arbitrarily changed. This implies the sensitivity of DS(µ̂) is also small:
∆ = O(ρ1/(αn)). Choosing τ = 42ρ1 to be larger by a constant factor from the target accuracy, we show that a sample size of
n = O(d/(εα)) is sufficient to achieve the desired utility.

Theorem 9 (Utility guarantee for mean estimation). There exist positive constants c and C such that for any (α, ρ1, ρ2)-resilient
set S with respect to some (µ ∈ Rd,Σ ≻ 0) satisfying α ∈ (0, c), ρ1 < c, ρ2 < c, and ρ21 ≤ cα, HPTR with the choices of the
distance function in Eq. (4), ∆ = 110ρ1/(αn), and τ = 42ρ1 achieves ∥Σ−1/2(µ̂− µ)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
.

This theorem shows how a resilient dataset (which is a deterministic condition) implies small error for HPTR. We make formal
connections to standard assumptions on the sample generating distributions and their respective resiliences in Appendix B.3, where
we also discuss the optimality of this utility guarantee. For example, sub-Gaussian distributions have ρ1 = O(α

√
log(1/α))

when n ≥ C ′d/(α log(1/α))2 for any α smaller than a universal constant. This implies that HPTR achieves a target accuracy of
∥Σ−1/2(µ̂−µ)∥ ≤ α̃ with sample size Õ( d

α̃2 +
d
α̃ε ) where Õ hides logarithmic factors in 1/α, δ, and ζ . We explain the intuition

behind our analysis and provide a complete proof in Appendices B.2–B.2. One by-product of using robust statistics is that we get
robustness for free, which we show next.

Robustness of HPTR One by-product of using robust statistics is that HPTR is also robust to adversarial corruption. We
therefore provide a more general guarantee that simultaneously achieves DP and robustness. Suppose we are given a dataset S
that is a corrupted version of a resilient dataset Sgood.

Assumption 1 (αcorrupt-corruption). Given a set Sgood = {x̃i ∈ Rd}ni=1 of n data points, an adversary inspects all data points,
selects αcorruptn of the data points, and replaces them with arbitrary dataset Sbad of size αcorruptn. The resulting corrupted
dataset is called S = {xi ∈ Rd}ni=1.



This adaptive adversary is strong, as the corruption can adapt to the entire dataset (for example it covers the Huber contamination
model (Huber 1964) and the non-adaptive adversarial model (Lecué and Lerasle 2020)). This threat model is now standard
in robust statistics literature (Steinhardt, Charikar, and Valiant 2018). If the original Sgood is resilient, we show that the same
guarantee as Theorem 9 holds under corruption up to an αcorrupt fraction of Sgood for sufficiently small αcorrupt ≤ (1/5.5)α.
The factor 1/5.5 is due to the fact that the algorithm treats some of the good data points as outliers (which is at most 4αcorrupt due
to the top and bottom tails cut in the definition of Mv,(2/5.5)α) and we need to handle neighboring datasets up to (0.5/5.5)αn
Hamming distance. Hence, we need to ensure resilience for α at least 5.5 times larger than the corruption αcorrupt.
Definition B.3 (Corrupt good set). We say a dataset S is (αcorrupt, α, ρ1, ρ2)-corrupt good with respect to (µ,Σ) if it is an
αcorrupt-corruption of an (α, ρ1, ρ2)-resilient dataset Sgood.

We get the following theorem showing that HPTR can tolerate up to (1/5.5)α fraction of the data being arbitrarily corrupted.
Theorem 10 (Robustness). There exist positive constants c and C such that for any ((2/11)α, α, ρ1, ρ2)-corrupt good set S
with respect to (µ ∈ Rd,Σ ≻ 0) satisfying α < c, ρ1 < c, ρ2 < c, and ρ21 ≤ cα, HPTR with the distance function in Eq. (4),
∆ = 110ρ1/(αn), and τ = 42ρ1 achieves ∥Σ−1/2(µ̂− µ)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
.

In Appendices B.2–B.2, we prove this more general result. When there is no adversarial corruption, Theorem 9 immediately
follows as a special case by selecting α as a free parameter depending on the target accuracy. The constants in all the theorems
can be improve if we track them more carefully, and we did not attempt to optimize them in this paper.

Proof strategy for Theorem 10 We show in Appendix B.2 that the robust one-dimensional statistics, µv(Mv,α) and σ2
v(Mv,α),

have small sensitivity if the dataset is resilient. Consequently, DS(µ̂) has a small local sensitivity, i.e. the sensitivity is small if
restricted to µ̂ close to µ and if the dataset is resilient. To ensure DP, we run RELEASE only when those two locality conditions
are satisfied; we first PROPOSE the sensitivity ∆ and a threshold τ , and then we TEST that DP guarantees are met on the given
dataset with those choices. Resilient datasets (i) pass this safety test with a high probability and (ii) achieve the desired accuracy,
both of which rely on our general analysis of HPTR with a general distance function (Theorem 15). We give sketches of the main
steps below.

One-dimensional robust statistics have small sensitivity on resilient datasets. Consider the robust projected mean µv(Mv,α)
for some small enough α > 0. If S is (α, ρ1, ρ2)-resilient, then the following technical lemma shows that the top and bottom
(2/5.5)α-tails cannot deviate too much from the mean.
Lemma B.4 (Lemma 10 from (Steinhardt, Charikar, and Valiant 2018)). For a (α, ρ1, ρ2)-resilient dataset S with respect to
(µ,Σ) and any 0 ≤ α̃ ≤ α, the following holds for any subset T ⊂ S of size at least α̃n and for any unit norm v ∈ Rd:∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi − µ⟩
∣∣∣ ≤ 2− α̃

α̃
ρ1 σv , and (8)

∣∣∣ 1

|T |
∑
xi∈T

(
⟨v, xi − µ⟩2 − σ2

v

)∣∣∣ ≤ 2− α̃

α̃
ρ2 σ

2
v . (9)

Under the definitions in Eq. (4), the top (2/5.5)α-tail denoted by Tv,α and bottom (2/5.5)α-tail denoted by Bv,α have the
empirical means that are no more than O(σvρ1/α) away from the true projected mean µv, respectively. It follows that there
exists at least one data point in Tv,α and one data point in Bv,α that are no more than O(σvρ1/α) away from µv. This implies
that the range of the middle subset Mv,α is provably bounded by O(σvρ1/α), and the sensitivity of the robust mean µv(Mv,α)
is guaranteed to be O(σvρ1/(αn)). We can similarly show that σ2

v(Mv,α) has sensitivity O(σ2
vρ

2
1/(α

2n)) as shown in Eq. (19).
Note that these sensitivity bounds are local in the sense that it requires the data to be (α, ρ1, ρ2)-resilient.

Small local sensitivity of DS(µ̂). Under the above sensitivity bounds for µv(Mv,α) and σ2
v(Mv,α), it follows after some

calculations as shown in Eq. (20) that the sensitivity for a resilient dataset S is bounded by

|DS(µ̂)−DS′(µ̂) | ≤ C ′ ρ1
αn

(
1 +

ρ1∥Σ−1/2(µ̂− µ)∥
α

)
, (10)

for some constant C ′ and all neighboring datasets S′, assuming ρ2 is sufficiently small. Note that this sensitivity bound is local
for two reasons; for this sensitivity to be small (i.e. O(ρ1/(αn))), we require S to be resilient and µ̂ to be close to µ. Thus the
meaning of local here is two folded while traditionally local sensitivity in the privacy literature only concerns the sensitivity of a
particular dataset S. We handle these two locality with TEST step that, among other things, checks that the DP conditions are
satisfied for the given dataset and the choice of ∆ and τ , which bounds the support of the exponential mechanism to be within
Bτ,S = {µ̂ : DS(µ̂) ≤ τ} with a choice of τ = O(ρ1). Consequently, we require ρ21/α≪ 1 for the second term in Eq. (10) to
be dominated by the first. Fortunately, this is indeed true for all scenarios we are interested in. For sub-Gaussian distributions,



ρ21 = α2 log(1/α) ≪ α. For k-th moment bounded distributions with k > 3, ρ21 = α2−2/k ≪ α. For covariance bounded
distributions, we do not hope to get a Mahalanobis distance guarantee. Instead, we aim for a Euclidean distance guarantee whose
sensitivity does not depend on µ̂ and we do not require ρ21/α≪ 1 (Appendix B.3).

Sample complexity analysis. Assuming the sensitivity of DS(µ̂) is bounded by ∆ = O(ρ1/(αn)), which we ensure with the
safety test, we analyze the utility of the exponential mechanism. For a target accuracy of ∥Σ−1/2(µ̂− µ)∥ = O(ρ1), we consider
two sets Bout = {µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ c0ρ1} and Bin = {µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ c1ρ1} for some c0 > c1. The exponential
mechanism achieves accuracy c0ρ1 with probability 1− ζ if

P(µ̂ /∈ Bout) ≤ P(µ̂ /∈ Bout)

P(µ̂ ∈ Bin)
≲

Vol(Bτ,S)

Vol(Bin)

e−
ε

4∆ c0ρ1

e−
ε

4∆ c1ρ1
≤ eO(d)e−

ε
4∆ (c0−c1)ρ1 ≤ ζ ,

where the second inequality requires DS(µ̂) ≃ ∥Σ−1/2(µ̂ − µ)∥, which we show in Lemma B.6. Since the volume ratio
is Vol(Bτ,S)/Vol(Bout) = eO(d), τ = O(ρ1), and ∆ = O(ρ1/(αn)), it is sufficient to have a large enough c0 and n =
O((d+ log(1/ζ))/(αε)) with a large enough constant.

Safety test. We are left to show that for a resilient dataset, the failure probability of the safety test, P(mτ + Lap(2/ε) <
(2/ε) log(2/δ)), is less than ζ. This requires the safety margin to be large enough, i.e. mτ ≥ k∗ = (2/ε) log(4/(δζ)). Recall
that the safety margin is defined as the Hamming distance to the closest dataset to S where the (ε/2, δ/2)-DP condition of the
exponential mechanism is violated. We therefore need to show that the DP condition is satisfied for not only S but any dataset S′

at Hamming distance at most k∗ from S.
Consider two exponential mechanisms r(ε,∆,τ,S′) and r(ε,∆,τ,S′′) on neighboring datasets S′ and S′′. Since Bτ,S′ ̸= Bτ,S′′ ,

we separately analyze the intersection Bτ,S′ ∩Bτ,S′′ and the differences Bτ,S′ \Bτ,S′′ and Bτ,S′′ \Bτ,S′ . In the intersection,
we show that the two probability distributions are within a multiplicative factor eε/2 of each other:

Pr(ε,∆,τ,S′)(µ̂ ∈ A) ≤ eε/2Pr(ε,∆,τ,S′′)(µ̂ ∈ A) ,

for all A ⊆ Bτ,S′ ∩ Bτ,S′′ , S′ within Hamming distance k∗ from a resilient dataset S, and S′′ ∼ S′. The main challenge is
that S′ is no longer a resilient dataset but a k∗-neighbor of a resilient dataset. Since such S′ is (k∗/n, α, ρ1, ρ2)-corrupt good
(Definition B.3), we show that corrupt good sets also inherit the bounded local sensitivity of a resilient dataset seamlessly as
shown in Lemma B.11.

In the set difference, we show that the total probability mass Pr(ε,∆,τ,S)
(µ̂ ∈ Bτ,S \Bτ,S′) and Pr(ε,∆,τ,S′)(µ̂ ∈ Bτ,S′ \Bτ,S)

are bounded by δ, respectively, as long as the overlap of the two supports are large enough. This requires τ ≫ ∆k∗, as we show
in Appendix F.1, which is satisfied for n ≥ (log(1/(δζ))/(αε)).

Outline. The analyses for the accuracy and the safety test build upon a universal analysis of HPTR in Theorem 15, which
holds more generally for any distance function Dϕ(θ̂) in the estimation problems of interest. For mean estimation, we show in
Appendices B.2-B.2 that the sufficient conditions of Theorem 15 are met for the choices of constants and parameters: ρ = ρ1,
c0 = 31.8, c1 = 10.2, k∗ = (2/ε) log(4/(δζ)), τ = 42ρ1, and ∆ = 110ρ1/(αn). We can set c2 to be a large constant and
will only change the constant factor in the sample complexity which we do not track. A proof of Theorem 10 is provided in
Appendix B.2, from which Theorem 9 follows immediately. All the lemmas assume ((1/5.5)α, α, ρ1, ρ2)-corrupt good set S,
α ≤ 0.015, ρ1 ≤ 0.013, and ρ2 ≤ 0.0005. We omit this assumption in stating the lemmas for brevity.

Resilience implies robustness For the assumption (d) in Theorem 15, we show that DS(µ̂) is a good approximation of the
true distance ∥Σ−1/2(µ̂− µ)∥ in Lemma B.6. We first show that the one-dimensional mean and the variance of the filtered out
Mv,α are robust.

Lemma B.5. For any unit norm v ∈ Rd, |⟨v, µ− µ(Mv,α)⟩| ≤ 6ρ1 σv and 0.9σv ≤ σv(Mv,α) ≤ 1.1σv .

Proof. For the mean bound,

|⟨v, µ− µ(Mv,α)⟩|

≤ |Mv,α ∩ Sbad|
|Mv,α|

|⟨v, µ(Sbad ∩Mv,α)− µ⟩|+ |Mv,α ∩ Sgood|
|Mv,α|

|⟨v, µ(Sgood ∩Mv,α)− µ⟩|

≤ (1/5.5)α

1− (4/5.5)α

2ρ1σv
(1/5.5)α

+
1− (1/5.5)α

1− (4/5.5)α
ρ1σv

≤ (2ρ1 + ρ1)σv/(1− (4/5.5)α) , (11)

The second inequality follows from the following. First, |⟨v, µ(Sgood ∩Mv,α)− µ⟩| ≤ σvρ1 by the definition of resilience and
that fact that |Sgood ∩Mv,α| ≥ (1− (5/5.5)α)n. Next, since |⟨v, µ(Sbad ∩Mv,α)−µ⟩| is less than |⟨v, µ(Sgood ∩Tv,α)−µ⟩|



or |⟨v, µ(Sgood ∩ Bv,α) − µ⟩|, both of which are at most 2ρ1σv/(1/5.5)α, from applying Lemma B.4 with a set size at least
(1/5.5)αn, we have

|⟨v, µ(Sbad ∩Mv,α)− µ⟩| ≤ 2

(1/5.5)α
ρ1σv .

The mean bound follows from (11) and α ≤ 0.1. For the variance upper bound,

σv(Mv,α)
2 =

1

(1− (4/5.5)α)n

∑
xi∈Mv,α

⟨v, xi − µ(Mv,α)⟩2 ≤ 1

(1− (4/5.5)α)n

∑
xi∈Mv,α

⟨v, xi − µ⟩2 ,

where the first inequality follows from the fact that subtracting the empirical mean µ(Mv,α) minimizes the second moment. We
can decompose the empirical deviation and show an upper bound first:∑

xi∈Mv,α
(⟨v, xi − µ⟩2 − σ2

v)

(1− (4/5.5)α)n

=

∑
xi∈Mv,α∩Sbad

(⟨v, xi − µ⟩2 − σ2
v)

(1− (4/5.5)α)n
+

∑
xi∈Mv,α∩Sgood

(⟨v, xi − µ⟩2 − σ2
v)

(1− (4/5.5)α)n

≤ (1/5.5)α(2ρ2/(1/5.5)α)σ
2
v + (1− (4/5.5)α)ρ2σ

2
v

1− (4/5.5)α
≤ 6ρ2σ

2
v , (12)

where in the second inequality we used resilience on Mv,α ∩ Sgood of size at least 1− (5/5.5)α. For xi ∈ Sbad ∩Mv,α, we
use the fact that∣∣ ⟨v, xi − µ⟩2 − σ2

v

∣∣ ≤ max
{∑

j∈Sgood∩Tv,α
(⟨v, xj − µ⟩2 − σ2

v)

|Sgood ∩ Tv,α|
,

∑
j∈Sgood∩Bv,α

(⟨v, xj − µ⟩2 − σ2
v)

|Sgood ∩ Bv,α|

}
≤ 2ρ2σ

2
v

(1/5.5)α
,

where we used Eq. (9) in Lemma B.4 for sets with size at least (1/5.5)αn. For the variance deviation lower bound,∑
xi∈Mv,α

(⟨v, xi − µ(Mv,α)⟩2 − σ2
v)

(1− (4/5.5)α)n
=

∑
xi∈Mv,α

(
⟨v, xi − µ⟩2 − σ2

v − ⟨v, µ− µ(Mv,α)⟩2
)

(1− (4/5.5)α)n

≥
∑

xi∈Mv,α∩Sbad
(⟨v, xi − µ⟩2 − σ2

v)

(1− (4/5.5)α)n
+

∑
xi∈Mv,α∩Sgood

(⟨v, xi − µ⟩2 − σ2
v)

(1− (4/5.5)α)n
− 36ρ21σ

2
v ,

≥ − 2ρ2σ
2
v

1− (4/5.5)α
− 1− (4/5.5)α

1− (4/5.5)α
ρ2σ

2
v − 36ρ21σ

2
v ≥ −(3.2ρ2 + 36ρ21)σ

2
v , (13)

where we used α ≤ 0.1, the first term only uses the fact that |Sbad| ≤ (1/5.5)αn, the second term uses resilience, and the last
term uses the mean bound we proved earlier. In (12) and (13), assuming ρ1 ≤ 0.04, and ρ2 ≤ 0.035, we have

√
1 + 6ρ2 ≤ 1.1

and
√
1− 3.2ρ2 − 36ρ21 ≥ 0.9.

We show that resilience implies our estimate of the distance is robust.

Lemma B.6. If µ̂ ∈ Bτ,S and τ = 42ρ1 then
∣∣ ∥Σ−1/2(µ̂− µ)∥ −DS(µ̂)

∣∣ ≤ 6ρ1 + 0.1τ ≤ 10.2ρ1.

Proof. From Lemma B.5, we know that for all µ̂ ∈ Bt,S ,

DS(µ̂) = max
∥v∥=1

⟨v, µ̂− µ(Mv,α)⟩
σv(Mv,α)

≥ max
∥v∥=1

⟨v, µ̂− µ⟩ − 6ρ1σv
1.1σv

. (14)

and

DS(µ̂) = max
∥v∥=1

⟨v, µ̂− µ(Mv,α)⟩
σv(Mv,α)

≤ max
∥v∥=1

⟨v, µ̂− µ⟩+ 6ρ1σv
0.9σv

. (15)

Applying Lemma B.1, we get 0.9DS(µ̂)− 6ρ1 ≤ ∥Σ−1/2(µ̂− µ)∥ ≤ 1.1DS(µ̂) + 6ρ1. Since DS(µ̂) ≤ τ , we get the desired
bound.



Bounded volume We show that the assumption (a) in Theorem 15 is satisfied for robust estimate DS(µ̂).
Lemma B.7. For ρ = ρ1, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn), and c2 ≥ log(67/12) + log((c0 + 2c1)/c1), we have
(7/8)τ − (k∗ + 1)∆ > 0,

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤ ec2d , and

Vol({µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ (c0 + 2c1)ρ})
Vol({µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ c1ρ})

≤ ec2d .

Proof. The second part of assumption (a) follows from the fact that

Vol({µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ r}) = cd|Σ|rd ,

where |Σ| =
∏d

j=1 σj(Σ) is the determinant of Σ and σj(Σ) is the j-th singular value, for some constant cd that only depends
on the dimension and selecting c2 ≥ log((c0 + 2c1)/c1).

The first part is tricky as we do not yet have handle on the set Bt,S for t > τ . In particular, we do not know how DS(µ̂) relates
to ∥Σ−1/2(µ̂− µ)∥ for such a µ̂ outside of Bτ,S . To this end, we use the following corollary.

Corollary B.8 (Corollary of Lemma B.6). If µ̂ ∈ B2τ,S and τ = 42ρ1 then
∣∣ ∥Σ−1/2(µ̂− µ)∥ −DS(µ̂)

∣∣ ≤ 14.2ρ1.

We will show that (7/8)τ − (k∗ + 1)∆ > 0. As this implies that τ + (k∗ + 1)∆ ≤ 2τ , we can use the above corollary to
show that

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤

Vol
(
{µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ τ + (k∗ + 1)∆ + c1ρ+ 14.2ρ1}

)
Vol
(
{µ̂ : ∥Σ−1/2(µ̂− µ)∥ ≤ (7/8)τ − (k∗ + 1)∆− c1ρ− 14.2ρ1}

)
=

( τ + (k∗ + 1)∆ + c1ρ+ 14.2ρ1
(7/8)τ − (k∗ + 1)∆− c1ρ− 14.2ρ1

)d
≤ (67/12)d ≤ ec2d ,

for the choices of ρ = ρ1, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn), and c2 ≥ log(67/12) where we used the fact that
for n ≥ C log(1/(δζ))/(αε) with a large enough constant C, we have (k∗ + 1)∆ ≤ 0.3ρ1. It follows that the condition
(7/8)τ − (k∗ + 1)∆ > 0 is also satisfied.

Resilience implies bounded local sensitivity We show that resilience implies the assumption (b) in Theorem 15 (Lemma B.11).
However, since local sensitivity needs to be established first for not just the given set S but also Hamming distance k∗ + 1
neighborhood of S, we need robustness results for this broader regime. Assuming (k∗ +1)/n ≤ α/11, we can extend robustness
results analogously as follows. We consider a set S′ with k data points arbitrarily changed from S. This implies that S′ is a
((1/5.5)α+ (k/n), α, ρ1, ρ2)-corrupt good set with respect to (µ,Σ). We first prove the analogous bounds to Lemma B.5 for
this S′.
Lemma B.9. For an ((1/5.5)α + α̃, α, ρ1, ρ2)-corrupt good set S′ with respect to (µ,Σ), α̃ ≤ (1/11)α, and any unit norm
v ∈ Rd, |⟨v, µ− µ(Mv,α)⟩| ≤ 14ρ1 σv and 0.9σv ≤ σv(Mv,α) ≤ 1.1σv .

Proof. Analogous to (11), we have

|⟨v, µ− µ(Mv,α)⟩| ≤ (1/5.5)α+ α̃

1− (4/5.5)α

2ρ1σv
(1/5.5)α− α̃

+
1− (1/5.5)α− α̃

1− (4/5.5)α
ρ1σv

≤ 14ρ1σv ,

where we used the fact that (5/5.5)α+ α̃ ≤ α. Analogous to (12), we have∑
xi∈Mv,α

(⟨v, xi − µ(Mv,α)⟩2 − σ2
v)

(1− (4/5.5)α)n
≤

((1/5.5)α+ α̃)( 2ρ2

(1/5.5)α−α̃ )σ
2
v + (1− (1/5.5)α− α̃)ρ2σ

2
v

1− (4/5.5)α

≤ 14ρ2σ
2
v .

Analogous to (13), we have∑
xi∈Mv,α

(⟨v, xi − µ(Mv,α)⟩2 − σ2
v)

(1− (4/5.5)α)n
≥ − ((1/5.5)α+ α̃)2ρ2σ

2
v

(1− (4/5.5)α)((1/5.5)α− α̃)
− ρ2σ

2
v − 142ρ21σ

2
v

≥ −(7.3ρ2 + 196ρ21)σ
2
v .

For α ≤ 0.045, ρ1 ≤ 0.013, and ρ2 ≤ 0.0005, we have the desired bounds.



Lemma B.10. For an ((1/5.5)α+ α̃, α, ρ1, ρ2)-corrupt good set S′ with respect to (µ,Σ) and α̃ ≤ (1/11)α, if µ̂ ∈ Bt,S′ for
some t > 0 then we have ∥Σ−1/2(µ̂− µ)∥ ≤ 14ρ1 + 1.1t and

∣∣D(µ̂, S′)− ∥Σ−1/2(µ̂− µ)∥
∣∣ ≤ 14ρ1 + 0.1t.

Proof. Analogously to the proof of Lemma B.6, we have

1.1D(µ̂, S′) ≥ −14ρ1 + ∥Σ−1/2(µ̂− µ)∥ , and

0.9D(µ̂, S′) ≤ 14ρ1 + ∥Σ−1/2(µ̂− µ)∥ .

This gives the desired bound.

The sensitivity of DS(µ̂) is local in two ways. First, we get the desired sensitivity bound for a dataset S that behaves nicely,
which is captured by the notion of ((1/5.5)α, α, ρ1, ρ2)-corrupt good set S. Secondly, the sensitivity bound requires the estimate
parameter µ̂ to be close to µ in ∥Σ−1/2(µ̂− µ)∥. Both locality in dataset and locality in estimate are ensured by the safety test
(Test step in HPTR). To show that corrupt good datasets pass the safety test, the following lemma establishes that those datasets
have small local sensitivity.
Lemma B.11. For ∆ = 110ρ1/(αn), τ = 42ρ1, and an ((1/5.5α), α, ρ1, ρ2)-corrupt good S, if

n = Ω
( log(1/(δζ))

αε

)
, (16)

then the local sensitivity in assumption (b) is satisfied.

Remark. Note that to keep ∆ = O(ρ1/(αn)) that we want (and is critical in getting the final utility guarantee), we need the
extra corruption to be k∗/n = O(α). This implies n = Ω(k∗/α) = Ω(log(1/(δζ))/(εα)). Further, k∗ = Ω(log(1/(δζ))/ε)
cannot be improved, as it is critical in achieving small failure probability in the testing step. Hence, the sample complexity of
Ω(log(1/(δζ))/(εα)) cannot be improved under current proof strategy.

Proof. Since S is ((1/5.5)α, α, ρ1, ρ2)-corrupt good and dH(S, S′) ≤ k∗, it follows that S′ is ((1/5.5)α + α̃, α, ρ1, ρ2)-
corrupt good with α̃ = (k∗/n). We further assume that α̃ ≤ (1/11)α, which follows from k∗ = (2/ε) log(4/(δζ)) and
n = Ω(log(1/δζ)/(εα)) with a large enough constant. We show that this resilience implies that S′ is dense around the boundary
of Mv,α, which in turn implies low sensitivity.

Recall that Tv,α ⊂ S is the set of data points corresponding to the largest (2/5.5)αn data points in the projected set S′
(v) =

{⟨v, xi⟩}xi∈S′ and Bv,α ⊂ S is the bottom set. Let Sgood denote the original uncorrupted resilient dataset. Applying Lemma B.4
to Sgood ∩ Tv,α (and Sgood ∩ Bv,α) of size at least (1/11)α (since corruption fraction is at most (1/5.5)α+ α̃ ≤ (1.5/5.5)α),∣∣ ⟨v, µ(Sgood ∩ Tv,α)− µ⟩

∣∣ ≤ 2ρ1σv
(1/11)α

, and
∣∣ ⟨v, µ(Sgood ∩ Bv,α)− µ⟩

∣∣ ≤ 2ρ1σv
(1/11)α

.

This implies that there is at least one good data point that is closer to the center than the means of the upper tail and the bottom
tail:

min
xi∈Sgood∩Tv,α

∣∣ ⟨v, xi − µ⟩
∣∣ ≤ 2ρ1σv

(1/11)α
, and min

xi∈Sgood∩Bv,α

∣∣ ⟨v, xi − µ⟩
∣∣ ≤ 2ρ1σv

(1/11)α
.

It follows that the distance between two closest points in Tv,α and Bv,α is bounded by

min
xi∈Sgood∩Tv,α

⟨v, xi⟩ − max
xi∈Sgood∩Bv,α

⟨v, xi⟩ ≤ (44/α)ρ1σv , (17)

when µ ∈ Mv,α. When µ ∈ Tv,α or µ ∈ Bv,α, it is straightforward that the above inequality holds. This implies low sensitivity
as follows.

Recall that Mv,α(S
′) denote the middle part after filtering out the top and bottom (2/5.5)α quantiles from {⟨v, xi⟩}xi∈S′ .

For a neighboring dataset S′′ and the corresponding S′′
(v), consider a scenario where one point xi in Mv,α(S

′) is replaced by
another point x̃i. If ⟨v, x̃i⟩ ∈ [ maxxi∈Sgood∩Bv,α

⟨v, xi⟩ , minxi∈Sgood∩Tv,α
⟨v, xi⟩ ], then Eq. (17) implies that |⟨v, xi − x̃i⟩| ≤

(44/α)ρ1σv . Otherwise, Mv,α(S
′′) will have xi replaced by either argminj∈Sgood∩Tv,α⟨v, xj⟩ or argmaxj∈Sgood∩Bv,α⟨v, xj⟩.

In either case, Eq. (17) implies that |⟨v, xi − x̃i⟩| ≤ (44/α)ρ1σv. The other case of when the replaced sample xi ∈ S is not in
Mv,α follows similarly.

From this, we get the following bounds on the sensitivity of the robust mean and robust variance. Note that using robust
statistics is critical in getting such small sensitivity bounds. Let µ′ = µ(Mv,α(S

′)) and µ′′ = µ(Mv,α(S
′′)) where we write the

dataset S′ in Mv,α(S
′) explicitly, ∣∣ ⟨v, µ′ − µ′′⟩

∣∣ ≤ 44ρ1σv
α(1− (4/5.5)α)n

. (18)



For the variance bound, let σ′2
v = σ2

v(Mv,α(S
′)) = (1/|Mv,α(S

′)|)
∑

x′
i∈Mv,α(S′)⟨v, x′i − µ′⟩2 and σ′′2

v = σ2
v(Mv,α(S

′′)).
Since (1 − (4/5.5)α)nσ′2

v =
∑

x′
i∈Mv,α(S′)⟨v, x′i − µ′⟩2 =

∑
x′
i∈Mv,α(S′)(⟨v, x′i − µ′′⟩2 − ⟨v, µ′′ − µ′⟩2), we have (1 −

(4/5.5)α)n(σ′2
v − σ′′2

v ) =
∑

x′
i∈Mv,α(S′)⟨v, x′i − µ′′⟩2 −

∑
x′′
i ∈Mv,α(S′′)⟨v, x′′i − µ′′⟩2 − (1− (4/5.5)α)n⟨v, µ′′ − µ′⟩2. We

bound each term separately. Note that Mv,α(S
′) and Mv,α(S

′′) only differ in at most one data point. We denote those by x′
and x′′ respectively. Then,∣∣∣ ∑

x′
i∈Mv,α(S′)

⟨v, x′i − µ′′⟩2 −
∑

x′′
i ∈Mv,α(S′′)

⟨v, x′′i − µ′′⟩2
∣∣∣ = ∣∣ ⟨v, x′ − µ′′⟩2 − ⟨v, x′′ − µ′′⟩2

∣∣
=
∣∣ ⟨v, x′ + x′′ − 2µ′′⟩⟨v, x′ − x′′⟩

∣∣
=
∣∣ ⟨v, x′ − µ′⟩+ ⟨v, µ′ − µ′′⟩+ ⟨v, x′′ − µ′′⟩

∣∣ ∣∣⟨v, x′ − x′′⟩
∣∣

≤ 3
(44ρ1σv

α

)2
,

and

(1− (4/5.5)α)n⟨v, µ′ − µ′′⟩2 ≤ (1− (4/5.5)α)n
(44ρ1σv)

2

(α(1− (4/5.5)α)n)2
.

This implies that

|σ′2
v − σ′′2

v | ≤ (44ρ1(α/2)σv)
2

(1− (4/5.5)α)nα2

(
3 +

1

(1− (4/5.5)α)n

)
≤ 4(44ρ1σv)

2

(1− (4/5.5)α)nα2
. (19)

Together, we get the following bound on the sensitivity of D(µ̂, S′). Since maxv av −maxv bv ≤ maxv |av − bv|, we have∣∣DS′(µ̂)−DS′′(µ̂)
∣∣ ≤ max

v:∥v∥=1

∣∣∣ ⟨v, µ̂− µ′⟩
σ′
v

− ⟨v, µ̂− µ′′⟩
σ′′
v

∣∣∣
≤ max

v:∥v∥=1

|⟨v, µ′ − µ′′⟩|
σ′
v

+
|⟨v, µ̂− µ′′⟩|

σv

∣∣∣σv
σ′
v

− σv
σ′′
v

∣∣∣
≤ 44ρ1

0.9α(1− (4/5.5)α)n
+ ∥Σ−1/2(µ̂− µ′′)∥max

v

σv
σ′
vσ

′′
v (σ

′
v + σ′′

v )
|σ′2

v − σ′′2
v |

≤ 44ρ1
0.9α(1− (4/5.5)α)n

+
5312ρ21

α2(1− (4/5.5)α)n
∥Σ−1/2(µ̂− µ′′)∥ ,

where we used triangular inequality in the second inequality and the third inequality follows from σ′
v ≥ 0.9σv (Lemma B.9),

Eqs. (18), and Lemma B.1, and the last inequality follows from and σ′′
v ≥ 0.9σv and (19).

From Lemma B.10, µ̂ ∈ Bτ+(k∗+3)∆,S implies ∥Σ−1/2(µ̂ − µ)∥ ≤ 14ρ1 + 1.1(τ + (k∗ + 3)∆). From Lemma B.9,
∥Σ−1/2(µ− µ′′)∥ ≤ 14ρ1. We apply triangular inequality and show that ∥Σ−1/2(µ̂− µ′′)∥ ≤ cα/ρ1 for the choices of ∆, k∗,
τ and n, with an arbitrarily small constant c:

∥Σ−1/2(µ̂− µ′′)∥ ≤ 28ρ1 + 1.1(τ + (k∗ + 3)∆)

≤ Cρ1 + C
ρ1 log(1/(δζ))

εαn
≤ 2Cρ1 ,

for some constant C > 0 where ∆ = 110ρ1/(αn), τ = 42ρ1, k∗ = (2/ε) log(4/(δζ)), and n ≥ C ′ log(1/(δζ))/(ε α). Under
the assumption that ρ21 ≤ cα and α ≤ c for some small enough c, this implies

|DS′(µ̂)−DS′′(µ̂)| ≤ 44ρ1
0.9(1− (4/5.5)α)αn

(
1 +

121ρ1
α

2Cρ1

)
≤ (44/0.9)ρ1

αn

1 + 44c

1− (4/5.5)c
≤ ∆ =

110ρ1
αn

. (20)

Proof of Theorem 10 We show that the sufficient conditions of Theorem 15 are met for the choices of constants and parameters:
p = d, ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, and ∆ = 110ρ1/(αn). We can set c2 to be a large constant and will only
change the constant factor in the sample complexity.



The assumptions (a), (b), and (d) follow from Lemmas B.7, B.11, and B.6, respectively. The assumption (c) follows from

∆ =
110ρ1
αn

≤ 1.2ρ1ε

32(c2d+ (ε/2) + log(16/(δζ)))
=

(c0 − 3c1)ρε

32(c2d+ (ε/2) + log(16/(δζ)))
,

for large enough n ≥ C ′(d+ log(1/(δζ)))/(αε). This finishes the proof of Theorem 10 from which Theorem 9 immediately
follows.

B.3 Step 3: Near-optimal guarantees
We provide utility guarantees for popular families of distributions in private or robust mean estimation literature: sub-Gaussian
(Barber and Duchi 2014; Lai, Rao, and Vempala 2016; Steinhardt, Charikar, and Valiant 2018; Zhu, Jiao, and Steinhardt 2019;
Karwa and Vadhan 2017; Kamath et al. 2019; Cai, Wang, and Zhang 2019; Bun et al. 2019; Biswas et al. 2020; Aden-Ali,
Ashtiani, and Kamath 2020; Brown et al. 2021; Diakonikolas et al. 2019; Diakonikolas et al. 2017; Dong, Hopkins, and Li
2019; Hopkins 2020; Diakonikolas et al. 2018), k-th moment bounded (Barber and Duchi 2014; Lai, Rao, and Vempala 2016;
Steinhardt, Charikar, and Valiant 2018; Zhu, Jiao, and Steinhardt 2019; Kamath, Singhal, and Ullman 2020), and covariance
bounded (Barber and Duchi 2014; Lai, Rao, and Vempala 2016; Steinhardt, Charikar, and Valiant 2018; Zhu, Jiao, and Steinhardt
2019; Kamath, Singhal, and Ullman 2020; Dong, Hopkins, and Li 2019; Hopkins, Li, and Zhang 2020; Depersin and Lecué
2019, 2021). We apply known resilience bounds of each family of distributions and substitute them in Theorems 9 and 10. In all
cases, the resulting sample complexity is near-optimal, which follows from matching information-theoretic lower bounds.

Since we aim for Mahalanobis distance error bounds, corresponding mean resilience we need in Definition B.2 scales linearly
in the projected standard deviation. For sub-Gaussian distributions, this requires the projected variance v⊤Σv to be lower
bounded by how fast the tail is decreasing, capture by the sub-Gaussian proxy Ω(v⊤Γv) in Eq. (21) (Appendix B.3). For k-th
moment bounded distributions with k > 3, this requires the projected variance to be lower bounded by Ω(E[|⟨v, x− µ⟩|k]2/k), a
condition known as hypercontractivity (Appendix B.3). When we do not have such lower bounds on the covariance, HPTR can
only hope to achieve Euclidean distance error bounds. Under our design principle, this translates into the choice of DS(µ̂) =
max∥v∥≤1⟨v, µ̂⟩ − µv(Mv,α). We give an example of this scenario with covariance bounded distributions (Appendix B.3).

Sub-Gaussian distributions We say a distribution P is sub-Gaussian with proxy Γ if for all ∥v∥ = 1 and t ∈ R,

Ex∼P

[
exp(t ⟨v, x⟩)

]
≤ exp

( t2 v⊤Γv
2

)
. (21)

Under this standard sub-Gaussianity, we are only guaranteed mean resilience of Eq. (6), for example, with R.H.S scaling as
ρ1
√
v⊤Γv instead of ρ1

√
v⊤Σv. This implies that the Mahalanobis distance of any robust estimate can be made arbitrarily

large by shrinking the covariance in one direction such that v⊤Σv ≪ v⊤Γv. To avoid such degeneracy, we add an additional
assumption that Σ ⪰ cΓ, which is also common in robust statistics literature, e.g., (Jambulapati, Li, and Tian 2020). With this
definition, it is known that sub-Gaussian samples are (α,O(α

√
log(1/α)), O(α log(1/α)))-resilient.

Lemma B.12 (Resilience of sub-Gaussian samples (Zhu, Jiao, and Steinhardt 2019) and (Jambulapati, Li, and Tian 2020,
Corollary 4)). For any fixed α ∈ (0, 1/2), consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a sub-Gaussian
distribution with mean µ, covariance Σ, and a sub-Gaussian proxy 0 ≺ Γ ⪯ c1Σ for a constant c1. There exist constants c2 and
c3 > 0 such that if n ≥ c2((d+ log(1/ζ))/(α log(1/α))2) then S is (α, c3α

√
log(1/α), c3α log(1/α))-resilient with respect

to (µ,Σ) with probability 1− ζ.

This lemma and Theorem 9 imply the following utility guarantee. Further, from Theorem 10 the guarantee also holds under
α-corruption of the i.i.d. samples from a sub-Gaussian distribution.

Corollary B.13. Under the hypothesis of Lemma B.12 there exists a constant c > 0 such that for any α ∈ (0, c), a dataset of size

n = O
( d+ log(1/ζ)

(α log(1/α))2
+
d+ log(1/(δζ))

αε

)
,

sensitivity of ∆ = O((1/n)
√
log(1/α)), and threshold of τ = O(α

√
log(1/α)), with large enough constants are sufficient for

HPTR(S) with the distance function in Eq. (4) to achieve

∥Σ−1/2(µ̂− µ)∥ = O(α
√

log(1/α)) , (22)

with probability 1 − ζ. Further, the same guarantee holds even if α-fraction of the samples are arbitrarily corrupted as in
Assumption 1.

This sample complexity is near-optimal up to logarithmic factors in 1/α and 1/ζ for δ = e−O(d). Even for DP mean estimation
without corrupted samples, HPTR is the first algorithm for sub-Gaussian distributions with unknown covariance that nearly
matches the lower bound of n = Ω̃(d/α2 + d/(αε) + log(1/δ)/ε) from (Karwa and Vadhan 2017; Kamath et al. 2019), where



Ω̃ hides polylogarithmic terms in 1/ζ, 1/α, d, 1/ε and log(1/δ). The third term has a gap of 1/α factor to our upper bound,
but this term is dominated by other terms under the assumption that δ = e−O(d). For completeness, we state the lower bound
in Appendix H. Existing algorithms are suboptimal as they require either n = Õ((d/α2) + (d(log(1/δ)3)/(αε2))) samples
with (1/ε2) dependence to achieve the error rate of Eq. (22) (Brown et al. 2021) or extra conditions such as strictly Gaussian
distributions (Brown et al. 2021; Bun et al. 2019) or known covariance matrices (Kamath et al. 2019; Aden-Ali, Ashtiani, and
Kamath 2020; Barber and Duchi 2014).

The error bound is near-optimal in its dependence in α under α-corruption. HPTR is the first estimator that is both (ε, δ)-DP
and also achieves the robust error rate of ∥Σ−1/2(µ̂−µ)∥ = O(α

√
log(1/α)), nearly matching the known information-theoretic

lower bound of ∥Σ−1/2(µ̂ − µ)∥ = Ω(α) (Chen, Gao, and Ren 2018). This lower bound holds for any estimator that is not
necessarily private and regardless of how many samples are available. In comparison, the existing robust and DP estimator
from (Liu et al. 2021), which runs in polynomial time, requires the knowledge of the covariance matrix Σ and a larger sample
complexity of n = Ω̃((d/α2) + (d3/2 log(1/δ))/(αε)). If privacy is not required (i.e., ε = ∞), a robust mean estimator from
(Zhu, Jiao, and Steinhardt 2019) achieves the same error bound and sample complexity as ours.

Hypercontractive distributions For an integer k ≥ 3, a distribution Pµ,Σ is k-th moment bounded with a mean µ and
covariance Σ if for all ∥v∥ = 1, we have Ex∼PX

[|⟨v, (x− µ)⟩|k] ≤ κk for some κ > 0. However, similar to sub-Gaussian case,
Mahalanobis distance guarantees require an additional lower bound on the covariance. To this end, we assume hypercontractivity,
which is common in robust statistics literature, e.g., (Klivans, Kothari, and Meka 2018).

Definition B.14. A distribution Pµ,Σ is (κ, k)-hypercontractive if for all v ∈ Rd, Ex∼PX
[|⟨v, (x− µ)⟩|k] ≤ κk(v⊤Σv)k/2.

Although samples from such heavy-tailed distributions are known to be not resilient, it is known that it is O(α)-
close in total variation distance to an (α,O(α1−1/k), O(α1−2/k))-resilient dataset. This means that the resulting dataset
is ((1/11)α, α,O(α1−1/k), O(α1−2/k))-corrupt good, for example. Note that hypercontractivity is invariant under affine trans-
formations and κ does not depend on the condition number of the covariance.
Lemma B.15 (Resilience of k-th moment bounded samples (Zhu, Jiao, and Steinhardt 2019, Lemma G.10)). For any fixed
α ∈ (0, 1/2), consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a (κ, k)-hypercontractive distribution with mean µ
and covariance Σ ≻ 0 for some k ≥ 3. For any c3 > 0, there exist constants c1 and c2 > 0 that only depend on c3 such that if

n ≥ c1

( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ2
+
κ2d log d

α2/k

)
,

then S is (c3α, α, c2kκα1−1/kζ−1/k, c2k
2κ2α1−2/kζ−2/k)-corrupt good with respect to (µ,Σ) with probability 1− ζ.

This lemma and Theorem 9 imply the following utility guarantee. Further, from Theorem 10 the guarantee also holds under
(1/5.5− c3)α-corruption of the i.i.d. samples from a (κ, k)-hypercontractive distribution. Choosing appropriate constants, we
get the following result.
Corollary B.16. Under the hypothesis of Lemma B.15 there exists a constant cκ,k,ζ that only depends on k, κ, and ζ such that
for any α ∈ (0, cκ,k,ζ), a dataset of size

n = O
(d+ log(1/(δζ))

εα
+

d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ2
+
κ2d log d

α2/k

)
,

sensitivity of ∆ = O(1/(nα1/k)), and threshold of τ = O(α1−1/k), with large enough constants are sufficient for HPTR(S)
with the distance function in Eq. (4) to achieve ∥Σ−1/2(µ̂ − µ)∥ = O(kκζ−1/kα1−1/k) with probability 1 − ζ. Further, the
same guarantee holds even if α-fraction of the samples are arbitrarily corrupted as in Assumption 1.

This sample complexity is near-optimal in its dependence in d, 1/ε, and 1/α when δ = e−Θ(d). Suppose ζ , k, and κ are Θ(1).
Even for DP mean estimation without robustness, HPTR is the first algorithm that achieves ∥Σ−1/2(µ̂− µ)∥ = O(α1−1/k) with
n = Õ( d

α2(1−1/k) +
d+log(1/δ)

εα ) samples, which nearly matches the known lower bounds. The first term O(d/α2(1−1/k)) cannot
be improved even if we do not require privacy. The second term O((d + log(1/δ))/εα) nearly matches the lower bound of
n = Ω(min{d, log((1− e−ε)/δ)}/(εα)) for DP mean estimation that we show in Proposition B.18. In typical DP scenarios,
we have 0 < ε ≤ 1 and δ = e−Θ(d) (Barber and Duchi 2014), in which case the upper and lower bounds match. An existing
DP mean estimator (without robustness) of (Kamath, Singhal, and Ullman 2020) achieves a stronger (ε, 0)-DP and a similar
accuracy but in Euclidean distance with a similar sample size of n = Õ( d

α2(1−1/k) + d
εα ). However, it requires a known or

identity covariance matrix and a known bound on the unknown mean of the form µ ∈ [−R,R]d. Such a bounded search space is
critical in achieving a stronger pure privacy guarantee with δ = 0.

The error bound is optimal in its dependence in α under α-corruption. The error bound ∥Σ−1/2(µ̂ − µ)∥ = O(α1−1/k)
matches the following information-theoretic lower bound in Proposition B.17; no algorithm can distinguish two distributions
whose means are at least O(α1−1/k) apart from α-fraction of samples corrupted, even with infinite samples. HPTR is the first



algorithm that guarantees both differential privacy and robustness (i.e., the error only depends on α and not in d) for k-th moment
bounded distributions. If privacy is not required (i.e., ε = ∞), a robust mean estimator from (Zhu, Jiao, and Steinhardt 2019)
achieves a similar error bound and sample complexity as ours.
Proposition B.17 (Lower bound for robust mean estimation). For any α ∈ (0, 1/2), there exist two distributions D1 and D2

satisfying the hypotheses of Lemma B.15 such that dTV(D1,D2) = α, and

∥Σ−1/2(µ1 − µ2)∥ = Ω(α1−1/k) .

Proof. We construct two scalar distributions D1 and D2 with dTV(D1,D2) = α as follows:

D1(x) =

{
(1− α)/2, if x ∈ {−1, 1}
α if x = −α1/k , and D2(x) =

{
(1− α)/2, if x ∈ {−1, 1}
α if x = α1/k

The variance is Ω(1) for both distributions and |Ex∼D1 [x]− Ex∼D2 [x]| = 2α1−1/k. Then it suffices to show that D1 and D2

are both (O(1), k)-hypercontractive. In fact, we know Ex∼D1
[x] = −α1−1/k, Ex∼D1

[x2] = Ex∼D2
[x2] = 1− α+ α1−2/k and

ED1
[|x|k] = 2− α. Since α ∈ (0, 1/2), there exists a constant c such that Ex∼D1

[|x− µ1|k] ≤ c, which concludes the proof.

Proposition B.18 (Lower bound for DP mean estimation). Let Pµ,Σ,k be the set of (1, k)-hypercontractive distributions with
mean µ ∈ Rd and covariance Σ ∈ Rd×d. Let Mε,δ be a class of (ε, δ)-DP estimators using n i.i.d. samples from P ∈ Pµ,Σ,k.
Then, for ε ∈ (0, 10), there exists a constant c such that

inf
µ̂∈Mε,δ

sup
µ∈Rd,Σ≻0,P∈Pµ,Σ,k

ES∼Pn [∥Σ−1/2(µ̂(S)− µ)∥2] ≥ cmin

{(
d ∧ log((1− e−ε)/δ)

nε

)2−2/k

, 1

}
.

Proof. We extend the proof of (Barber and Duchi 2014, Proposition 4) to hypercontractive distributions. Before we prove
the lower bound, we first establish the private version of standard statistical estimation problem. Specifically, let P denote a
family of distributions of interest and θ : P → Θ denote the population parameter. The goal is to estimate θ from i.i.d. samples
x1, x2, . . . , xn ∼ P . Let θ̂ be an (ε, δ)-differentially private estimator. Furthermore, let ρ : Θ×Θ → R+ be a (semi)metric on
parameter space Θ and ℓ : R+ → R+ be a non-decreasing loss function with ℓ(0) = 0.

To measure the performance of our (ε, δ)-DP estimator θ̂, we define the minimax risk as follows:

inf
θ̂

sup
P∈P

Ex1,x2,...,xn∼P

[
ℓ
(
ρ
(
θ̂ (x1, . . . , xn) , θ(P )

))]
. (23)

To prove the lower bound of the minimax risk, we construct a well-separated family of distributions and convert the estimation
problem into a testing problem. Specifically, let V be an index set of finite cardinality. Define PV = {Pv, v ∈ V} ⊂ P be an
indexed family of distributions. If for all v ̸= v′ ∈ V we have ρ(Pv, Pv′) ≥ 2t, we say PV is 2t-packing of Θ.

The proof of (Barber and Duchi 2014, Proposition 4) is based on following lemma.

Lemma B.19 ((Barber and Duchi 2014, Theorem 3)). Fix p ∈ [0, 1], and let PV be a 2t-packing of Θ such that dTV(Pv, Pv′) = p.
Let θ̂ be (ε, δ) differentially private estimator. Then

1

|V|
∑
ν∈V

Pv

(
ρ
(
θ̂, θ(Pv)

)
≥ t
)
≥

(|V| − 1) ·
(

1
2e

−ε⌈np⌉ − δ 1−e−ε[np⌉

1−e−ε

)
1 + (|V| − 1) · e−ε⌈np⌉ . (24)

In our problem, we set P to be P = Pµ,Σ,k. It suffices to construct such index set V and indexed family of distributions PV .
We construct a similar packing set defined in the proof of (Barber and Duchi 2014, Proposition 4). By (Acharya, Sun, and Zhang
2021, Lemma 6), there exists a finite set V ⊂ Rd with cardinality |V| = 2Ω(d), ∥v∥ = 1 for all v ∈ V , and ∥v − v′∥ ≥ 1/2 for
all v ̸= v′ ∈ V . Define Q0 as Q0 = N (0, Id×d), and Qv as a point mass on x = α−1/kcv, where v ∈ V . We construct Pv as
Pv = αQv + (1− α)Q0.

We first verify that PV ⊂ P . It is easy to see µ(Pv) = Ex∼Pv
[x] = α1−1/kv and Σ(Pv) = Ex∼Pv

[(x − µ(Pv))(x −
µ(Pv))

⊤] = (1−α)Id×d +α(1−α)α−2/kvv⊤. This implies 1
2Id×d ⪯ Σ(Pv) ⪯ Id×d. Since E

[
(X − E[X])k

]
≤ E

[
Xk
]

for
any X ≥ 0, it suffices to show Ex∼Pv

[| ⟨u, x⟩ |k] ≤ Ck for some constant C > 0 and any ∥u∥ = 1. In fact, let ck denote k-th
moment of standard Gaussian, we have

Ex∼Pv
[| ⟨u, x⟩ |k] = (1− α)ck + α

∣∣∣〈u, α−1/kv
〉∣∣∣k = O(1) .

It is also easy to see that dTV(Pv, Pv′) = α. Let ρ(θ1, θ2) = ∥θ1 − θ2∥. We also have

t = min
v ̸=v′∈V

α1−1/k∥v − v′∥ ≥ 1

2
α1−1/k .



Next, we apply the reduction of estimation to testing with this packing V . For (ε, δ)-DP estimator µ̂, using Lemma B.19, we
have

sup
P∈P

ES∼Pn [∥Σ(P )−1/2(µ̂(S)− µ(P ))∥2] ≥ 1

|V|
∑
v∈V

ES∼Pn
v
[∥Σ(Pv)

−1/2(µ̂(S)− µ(Pv))∥2]

= t2
1

|V|
∑
v∈V

Pv

(
∥Σ(Pv)

−1/2(µ̂(S)− θ(Pv))∥ ≥ t
)

≍ t2
1

|V|
∑
v∈V

Pv (∥µ̂(S)− θ(Pv)∥ ≥ t)

≳ t2
ed/2 ·

(
1
2e

−ε⌈nα⌉ − δ
1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where the last inequality follows from the fact that d ≥ 2.
The rest of the proof follows from (Barber and Duchi 2014, Proposition 4). We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
so that

sup
P∈P

ES∼Pn [∥Σ(P )−1/2(µ̂(S)− µ(P ))∥2] ≳ α2−2/k .

This means, for ε ∈ (0, 1),

inf
µ̂∈Mε,δ

sup
P∈P

ES∼Pn [∥Σ(P )−1/2(µ̂(S)− µ(P ))∥2] ≳ min

{(
d ∧ log((1− e−ε)/δ)

nε

)2−2/k

, 1

}
,

which completes the proof.

Covariance bounded distributions A distribution Pµ,Σ is covariance bounded with mean µ and covariance Σ if ∥Σ∥ ≤ 1.
Contrary to the previous cases, the sample variance is not resilient as {⟨v, xi − µ⟩2} do not concentrate. To get around this issue,
we use the Euclidean distance: Dϕ(µ̂, µ) = ∥µ̂− µ∥. This leads to the surrogate Euclidean distance of

DS(µ̂) = max
∥v∥≤1

⟨v, µ̂⟩ − µv(Mv,α) . (25)

As this does not depend on the robust variance, σ2
v(Mv,α), we only require the following first order resilience.

Lemma B.20 (Resilience of covariance bounded samples (Zhu, Jiao, and Steinhardt 2019, Lemma G.3)). For any fixed
α ∈ (0, 1/2), consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from a covariance bounded distribution with mean µ and
covariance Σ ≻ 0. If n = Ω(d log(d/ζ)/(α)) then with probability 1− 3ζ, for any subset T ⊂ S of size |T | ≥ (1− α)n, there
exists a constant C > 0 such that the following holds for all α ∈ (0, 1/2) and for all v ∈ Rd with ∥v∥ = 1:∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩ − µv

∣∣∣ ≤ Cα1/2 ,

where µv = ⟨v, µ⟩.
This lemma and Theorem 10, adapted for the new DS(µ̂) = max∥v∥≤1⟨v, µ̂⟩ − µv(Mv,α), imply the following utility

guarantee.

Corollary B.21. Under the hypothesis of Lemma B.20 there exists a constant cζ that only depends on ζ such that for α ∈ (0, cζ),
a dataset of size

n = O
(d+ log(1/(δζ))

εα
+
d log(d/ζ)

α

)
,

sensitivity of ∆ = O(1/(n
√
α)), and threshold of τ = O(

√
α), with large enough constants are sufficient for HPTR(S) with the

distance function in Eq. (25) to achieve ∥µ̂− µ∥ = O(α1/2) with probability 1− 3ζ. Further, the same guarantee holds even if
α-fraction of the samples are arbitrarily corrupted as in Assumption 1.



This sample complexity is near-optimal in its dependence in d, 1/ε, and 1/α for δ = e−O(d). It matches the information-
theoretic lower bound of n = Ω(d/εα) from (Kamath, Singhal, and Ullman 2020). For completeness, we write the lower bound
in Appendix H. This problem is easier then the sub-Gaussian or k-th moment bounded settings, since the error is measured in
Euclidean distance and hence one does not need to adapt to the unknown covariance. Therefore there exist other algorithms
achieving near-optimality and even runs in polynomial time (Kamath, Singhal, and Ullman 2020).

The error rate is near-optimal under α-corruption, matching the information-theoretic lower bound of ∥µ̂− µ∥ = Ω(α1/2)
(Dong, Hopkins, and Li 2019). Note that there exists an DP and robust algorithm from (Liu et al. 2021) that achieves near-
optimality in both error rate and sample complexity but requires an additional assumption that the spectral norm of the covariance
is known and the unknown mean is in a bounded set, [−R,R]d, with a known R.

Remark. Corollary B.21 is suboptimal as (i) the error metric is Euclidean ∥µ̂− µ∥ instead of Mahalanobis ∥Σ−1/2(µ̂− µ)∥,
and (ii) sample complexity scales as 1/ζ instead of log(1/ζ). It remains an open problem if these gaps can be closed. For the
former, one could use the Stahel-Donoho outlyingness (Stahel 1981; Donoho 1982),

DS(µ̂) = sup
v∈Rd,∥v∥=1

|⟨v, µ̂⟩ −Med(⟨v, S⟩)|
Med(|⟨v, S⟩ −Med(⟨v, S⟩)|)

,

in the exponential mechanism, which replaces second moment based normalization by a first moment based one that is resilient.
Here, Med(⟨v, S⟩) is the median of {⟨v, xi⟩}xi∈S . Further, replacing the median by the median of means can improve the
dependence on ζ. Such directions have been fruitful for robust but non-private mean estimation (Depersin and Lecué 2021).

C Linear regression
In a standard linear regression, we have i.i.d. samples S = {(xi ∈ Rd, yi ∈ R)}ni=1 from a distribution Pβ,Σ,γ2 of a linear model:

yi = x⊤i β + ηi ,

where the input xi ∈ Rd has zero mean and covariance Σ and the noise ηi ∈ R has variance γ2. We further assume E[xiηi] = 0,
which is equivalent to assuming that the true parameter β = Σ−1E[yixi]. In DP linear regression, we want to output a DP
estimate β̂ of the unknown model parameter β (which corresponds to θ = µ in the general notation), assuming that both
covariance Σ ≻ 0 and the noise variance γ2 (corresponding to ϕ = (Σ, γ) in the general notation) are unknown. The resulting
error is measured in DΣ,γ(β̂, β) = (1/γ)∥Σ1/2(β̂ − β)∥ which is equivalent to the (re-scaled) root excess prediction risk of the
estimated predictor β̂. Similar to Mahalanobis distance for mean estimation, this is challenging as we aim for a tight guarantee
that adapts to the unknown Σ without having enough samples to directly estimate Σ. We follow the three-step strategy of
Section 1.2 and provide utility guarantees.

C.1 Step 1: Designing the surrogate DS(β̂) for the error metric (1/γ)∥Σ1/2(β̂ − β)∥
In the RELEASE step of HPTR, we propose the following surrogate error metric for the exponential mechanism:

DS(β̂) = max
v:∥v∥≤1

1
|Nv,β̂,α|

∑
xi∈Nv,β̂,α

⟨v, xi(yi − x⊤i β̂)⟩

σv(Mv,α)γ̂
, (26)

where γ̂2 is defined as

γ̂2 = min
β̄

1

|Bβ̄,α|
∑

i∈Bβ̄,α

(yi − x⊤i β̄)
2 . (27)

We define Nv,β̂,α, Mv,α and Bβ̄,α as follows. For a fixed v, Mv,α is defined in Appendix B.1 as a subset of S with
size (1− (4/5.5)α)n that remains after removing (4/5.5)αn data points corresponding to the top (2/5.5)αn and the bottom
(2/5.5)αn samples when projected down to Sv = {⟨v, xi⟩}i∈[n]. We denote a robust estimate of the variance in direction v
as σv(Mv,α)

2 = (1/|Mv,α|)
∑

xi∈Mv,α
⟨v, xi⟩2, since xi’s are zero mean. Similarly, for fixed β̂ and v, we consider a set of

projected data points Sv,β̂ = {⟨v, xi(yi − x⊤i β̂)⟩}i∈[n] and partition S into three disjoint sets Bv,β̂,α, Nv,β̂,α, and Tv,β̂,α, where
Bv,β̂,α is the subset of S corresponding to the bottom (2/5.5)αn data points with smallest values in Sv,β̂ , Tv,β̂,α corresponds
to the top (2/5.5)αn data points, and Nv,β̂,α corresponds to the remaining (1 − (4/5.5)α)n middle data points. We use
Tv,β̂,α,Nv,β̂,α, and Bv,β̂,α to denote both the set of paired examples {(xi, yi)} and the set of indices of those examples, and it
should be clear form the context which one we mean.

For a fixed β̄, Bβ̄,α is defined as a subset of S with size (1− (3.5/5.5)α)n that remains after removing the largest (2/5.5)αn
data points in set Sβ̄ = {(yi − x⊤i β̄)

2}i∈[n].



This choice is justified by Lemma C.1, which shows that if we replace the robust one-dimensional statistics by the true ones,
we recover the target error metric. Hence, the exponential mechanism with distance DS(β̂) is approximately and stochastically
minimizing ∥Σ1/2(β̂ − β)∥. For a more elaborate justification of using DS(β̂), we refer to a similar choice for mean estimation
in Appendix B.1.

Lemma C.1. For any β ∈ Rd, 0 ≺ Σ ∈ Rd×d, γ > 0, let σ2
v = v⊤Σv. If E[ηixi] = 0, yi = x⊤i β + ηi, and (xi, yi) ∼ Pβ,Σ,γ2

then we have

∥Σ1/2(β̂ − β)∥ = max
v:∥v∥≤1

EPβ,Σ,γ2 [⟨v, xi(yi − x⊤i β̂)⟩]
σv

, and

γ2 = min
β̄∈Rd

E[(yi − x⊤i β̄)
2] .

Proof. We have

max
v:∥v∥≤1

EPβ,Σ,γ2 [⟨v, xi(yi − x⊤i β̂)⟩]
σv

= max
v:∥v∥≤1

EPβ,Σ,γ2 [⟨v, xi(x⊤i (β − β̂) + ηi)⟩]
σv

= max
v:∥v∥≤1

⟨v,Σ(β − β̂)⟩
σv

= ∥Σ1/2(β − β̂)∥ ,

where the second equality uses the fact that ηi has zero mean and xi has covariance Σ. The last equality follows from Lemma G.1.
For the noise, we have E[(yi − x⊤i β̄)

2] = E[(x⊤i β + ηi − x⊤i β̄)
2] = E[η2i ] + E[(β − β̄)xix

⊤
i (β − β̄)], which follows from

E[ηixi] = 0. This is minimized when β̄ = β, and the minimum is γ2.

C.2 Step 2: Utility analysis under resilience
The following resilience is a fundamental property of the dataset that determines the sensitivity of DS(β̂). We refer to
Appendix B.2 for a detailed explanation of how resilience relates to sensitivity.

Definition C.2 (Resilience for linear regression). For some α ∈ (0, 1), ρ1 ∈ R+, ρ2 ∈ R+, and ρ3 ∈ R+, we say a set of n
labelled data points Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 is (α, ρ1, ρ2, ρ3, ρ4)-resilient with respect to (β,Σ, γ) for some β ∈ Rd,
positive definite Σ ∈ Rd×d, and γ > 0 if for any T ⊂ Sgood of size |T | ≥ (1 − α)n, the following holds for all v ∈ Rd with
∥v∥ = 1: ∣∣∣ 1

|T |
∑

(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i β)
∣∣∣ ≤ ρ1 σv γ , (28)

∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩2 − σ2
v

∣∣∣ ≤ ρ2 σ
2
v , (29)

∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩
∣∣∣ ≤ ρ3 σv , and (30)

∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − x⊤i β)
2 − γ2

∣∣∣ ≤ ρ4 γ
2 , (31)

where σ2
v = v⊤Σv.

For example, n i.i.d. samples from sub-Gaussian xi’s and sub-Gaussian ηi’s (independent of xi’s) is(
α,O(α log(1/α)), O(α log(1/α)), O(α

√
log(1/α)), O(α log(1/α))

)
-resilient. Resilient dataset implies a sensitivity of ∆ =

O(ρ1/(αn)) = O(log(1/α)/n), where α is a free parameter determined by the target accuracy (1/γ)∥Σ1/2(β̂ − β)∥ =
O(α log(1/α)). We show that a sample size of O((d + log(1/δ))/(εα)) is sufficient to achieve the target accuracy for any
resilient dataset. In Appendix C.3, we apply this theorem to resilient datasets from several sampling distributions of interest and
characterize the trade-offs.

Theorem 11 (Utility guarantee for linear regression). There exist positive constants c and C such that for any (α, ρ1, ρ2, ρ3, ρ4)-
resilient set S with respect to (β,Σ ≻ 0, γ > 0) satisfying α ∈ (0, c),ρ1 < c, ρ2 < c, ρ23 ≤ cα and ρ4 < c, HPTR with the
distance function in Eq. (26), ∆ = 110ρ1/(αn), and τ = 42ρ1 achieves (1/γ)∥Σ1/2(β̂ − β)∥ ≤ 32ρ1 with probability 1− ζ , if

n ≥ C
d+ log(1/(δζ))

εα
. (32)



Robustness of HPTR One by-product of using robust statistics in DS(β̂) is that robustness for HPTR comes for free under a
standard data corruption model.
Assumption 2 (αcorrupt-corruption). Given a set Sgood = {(x̃i ∈ Rd, ỹi ∈ R)}ni=1 of n data points, an adversary inspects all
data points, selects αcorruptn of the data points, and replaces them with arbitrary dataset Sbad of size αcorruptn. The resulting
corrupted dataset is called S = {(xi ∈ Rd, yi ∈ R)}ni=1.

The same guarantee as Theorem 11 holds under corruption up to a corruption of αcorrupt < (1/5.5)α fraction of a
(α, ρ1, ρ2, ρ3, ρ4)-resilient dataset Sgood. The factor (1/5.5) is due to the fact that the algorithm can remove (4/5.5)α fraction
of the good points and a slack of (0.5/5.5)α fraction is needed to resilience of neighboring datasets.
Definition C.3 (Corrupt good set). We say a dataset S is (αcorrupt, α, ρ1, ρ2, ρ3, ρ4)-corrupt good with respect to (β,Σ, γ) if it
is an αcorrupt-corruption of an (α, ρ1, ρ2, ρ3, ρ4)-resilient dataset Sgood.
Theorem 12 (Robustness). There exist positive constants c and C such that for any ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set
S with respect to (β,Σ ≻ 0, γ > 0) satisfying α < c, ρ1 < c, ρ2 < c, ρ23 ≤ cα and ρ4 < c, HPTR with the distance function in
Eq. (26), ∆ = 110ρ1/(αn), and τ = 42ρ1 achieves (1/γ)∥Σ1/2(β̂ − β)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
. (33)

We provide a proof in Appendixs C.2-C.2. When there is no adversarial corruption, Theorem 11 immediately follows by
selecting α as a free parameter.

Proof strategy for Theorem 12 The overall proof strategy follows that of Appendix B.2 for mean estimation. We highlight the
differences here.
Lemma C.4 (Lemma 10 from (Steinhardt, Charikar, and Valiant 2018)). For a (α, ρ1, ρ2, ρ3, ρ4)-resilient set S with respect to
(β,Σ, γ) and any 0 ≤ α̃ ≤ α, the following holds for any subset T ⊂ S of size at least α̃n and for any unit vector v ∈ Rd:∣∣∣ 1

|T |
∑

(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i β)
∣∣∣ ≤ 2− α̃

α̃
ρ1 σv γ , (34)

∣∣∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩2 − σ2
v

∣∣∣∣∣ ≤ 2− α̃

α̃
ρ2σ

2
v , (35)∣∣∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩

∣∣∣∣∣ ≤ 2− α̃

α̃
ρ3σv , and (36)

∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − x⊤i β)
2 − γ2

∣∣∣ ≤ 2− α̃

α̃
ρ4 γ

2 . (37)

This technical lemma is critical in showing that the sensitivity of one-dimensional statistics is bounded by the resilience of the
dataset, such that the sensitivity of DS(β̂) for a resilient S is bounded by

|DS(β̂)−DS′(β̂)| ≤ C ′
(
1 +

ρ23
α

)ρ1 + (1/γ)∥Σ1/2(β̂ − β)∥
αn

,

for some constant C ′ and for any neighboring dataset S′ as shown in Eq (47). The desired sensitivity bound is local in two ways:
it requires S to be resilient and (1/γ)∥Σ1/2(β̂ − β)∥ = O(ρ1). Under the assumption that ρ23/α = O(1) with a small enough
constant, this achieves the desired bound ∆ = O(ρ1/(αn)) with β̂ ∈ Bτ,S and τ = O(ρ1). The standard utility analysis of
exponential mechanisms shows that the error of (1/γ)∥Σ1/2(β̂ − β)∥ = O(ρ1) can be achieved when eO(d)−c ε

∆ρ1 ≤ ζ, which
happens if n = Ω((d+ log(1/ζ))/(εα)) with a large enough constant. The TEST step checks the two localities by ensuring that
DP conditions are met for the given dataset.

Outline. Analogous to the mean estimation proof, the analyses of utility and safety test build upon the universal analysis of
HPTR in Theorem 15. For linear regression, we show in Appendices C.2-C.2 that the assumptions of Theorem 15 are met for
a resilient dataset and the choices of constants and parameters: ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn),
τ = 42ρ1, k∗ = (2/ε) log(4/(δζ)), and a large enough constant c2, and assume that α < c and ρ1 < c for small enough constant
c. A proof of Theorem 12 is provided in Appendix C.2, and Theorem 11 immediately follows by selecting α as a free parameter.

The above resilience properties also imply the following useful resilience on the Sβ̄ = {(yi − β̄⊤xi)
2}i=[n] for any vector β̄.

Lemma C.5 (Resilience of residual square). Let Sgood = {(xi ∈ Rd, yi ∈ R)}i=[n] be (α, ρ1, ρ2, ρ3, ρ4)-resilient with respect
to (β,Σ, γ). Let ρ∗ = max{ρ1, ρ2, ρ4}. Then we have



1. for any T ∈ Sgood of size |T | ≥ (1− α)n and any vector β̄ ∈ Rd,∣∣∣∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − β̄⊤xi)
2 − (γ + ∥Σ1/2(β − β̄)∥)2

∣∣∣∣∣∣ ≤ ρ∗(γ + ∥Σ1/2(β − β̄)∥)2 , (38)

2. and for any 0 ≤ α̃ ≤ α and T ∈ Sgood of size |T | ≥ α̃n, we have∣∣∣∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − β̄⊤xi)
2 − (γ + ∥Σ1/2(β − β̄)∥)2

∣∣∣∣∣∣ ≤ 2− α̃

α̃
ρ∗(γ + ∥Σ1/2(β − β̄)∥)2 . (39)

Proof. The proof follows directly from resilience properties of Eq. (28), (29) and (31).

Resilience implies robustness To show that the assumption (d) in Theorem 15 is satisfied, we use the robustness of
one-dimensional variance σv(Mv,α) (Lemma C.6) and show that DS(β̂) is a good approximation of (1/γ)∥Σ1/2(β̂ − β)∥
(Lemma C.8).

Lemma C.6. For an ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ, γ), and any unit norm vector v ∈ Rd,
we have 0.9σv ≤ σv(Mv,α) ≤ 1.1σv .

Proof. This follows from Lemma B.5.

Lemma C.7. For an ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ, γ), and any unit norm vector v ∈ Rd,
we have 0.99γ ≤ γ̂ ≤ 1.01γ.

Proof. Analogous to the proof of Lemma C.4, for any fixed β̄, we have∣∣∣∣∣∣ 1

|Bβ̄,α|
∑

i∈Bβ̄,α

(yi − x⊤i β̄)
2 − (γ + ∥Σ1/2(β − β̄)∥)2

∣∣∣∣∣∣
≤

|
∑

Bβ̄,α∩Sgood
(yi − x⊤i β̄)

2 − (γ + ∥Σ1/2(β − β̄)∥)2|
(1− (2/5.5)α)n

+
|
∑

Bβ̄,α∩Sbad
(yi − x⊤i β̄)

2 − (γ + ∥Σ1/2(β − β̄)∥)2|
(1− (2/5.5)α)n

(a)

≤ (1− (2/5.5)α)nρ∗(γ + ∥Σ1/2(β − β̄)∥)2

(1− (2/5.5)α)n
+

(2/11)αn · 2ρ∗(γ + ∥Σ1/2(β − β̄)∥)2/((2/11)α)
(1− (2/5.5)α)n

(b)

≤ 4ρ∗(γ + ∥Σ1/2(β − β̄)∥)2 , (40)

where (a) follows from Lemma C.5, and (b) follows from our assumption that α ≤ c for some small enough constant c.
Let F (β̄) = 1

|Bβ̄,α|
∑

i∈Bβ̄,α
(yi − x⊤i β̄)

2. We know γ̂2 = minβ̄ F (β̄) ≤ F (β), which, together with Eq. (40) implies

γ̂2 ≤ (1 + 4ρ∗)γ2 ≤ 1.0201γ2 ,

when ρ∗ ≤ c for some c small enough.
Also we have

γ̂2 ≥ (1− 4ρ∗)(γ + ∥Σ1/2(β − β̄)∥)2 ≥ (1− 4ρ∗)γ2 ≥ 0.9801γ2.

when ρ∗ ≤ c for some c small enough.

Lemma C.8. For an ((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (β,Σ, γ), if β̂ ∈ Bτ,S and τ = 42ρ1 then∣∣ ∥Σ1/2(β̂ − β)∥/γ −DS(β̂)
∣∣ ≤ 0.15τ + 1.1ρ1 ≤ 10.2ρ1.

Proof. By Lemma C.1, Lemma G.2 and resilience Eq. (28) and Eq. (29), we have



∣∣∣∣∣∣ max
v:∥v∥≤1

1
|Nv,β̂,α|

∑
i∈Nv,β̂,α

⟨v, xi(yi − x⊤i β̂)⟩

σv
−
∥∥∥Σ1/2(β − β̂)

∥∥∥
∣∣∣∣∣∣

=

∣∣∣∣∣∣ max
v:∥v∥≤1

1
|Nv,β̂,α|

∑
i∈Nv,β̂,α

(
v⊤xix

⊤
i (β − β̂) + v⊤xiηi

)
σv

− max
v:∥v∥≤1

v⊤Σ(β − β̂)

σv

∣∣∣∣∣∣
≤ max

v:∥v∥≤1

∣∣∣∣∣∣
v⊤
(

1
|Nv,β̂,α|

∑
i∈Nv,β̂,α

xix
⊤
i − Σ

)
(β − β̂)

σv
+
v⊤ 1

|Nv,β̂,α|
∑

i∈Nv,β̂,α
xiηi

σv

∣∣∣∣∣∣
≤

∥∥∥∥∥∥Σ−1/2

 1

|Nv,β̂,α|
∑

i∈Nv,β̂,α

xix
⊤
i − Σ

 (β − β̂)

∥∥∥∥∥∥+
∥∥∥∥∥∥Σ−1/2 1

|Nv,β̂,α|
∑

i∈Nv,β̂,α

xiηi

∥∥∥∥∥∥
≤ ρ2∥Σ1/2(β − β̂)∥+ ρ1γ .

Together with Lemma C.6, this implies

0.9DS(β̂)γ̂ − ρ1γ

1 + ρ2
≤

∥∥∥Σ1/2(β − β̂)
∥∥∥ ≤ 1.1DS(β̂)γ̂ + ρ1γ

1− ρ2
.

Assuming ρ2 ≤ 0.013, we have 0.86DS(β̂)− 1.1ρ1 ≤
∥∥∥Σ1/2(β − β̂)

∥∥∥ /γ ≤ 1.15DS(β̂) + 1.1ρ1. Since DS(β̂) ≤ τ , we get
the desired bound.

Bounded Volume We show that the assumption (a) in Theorem 15 is satisfied for robust estimate DS(β̂).

Lemma C.9. For ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, ∆ = 110ρ1/(αn), and c2 ≥ log(67/12) + log((c0 + 2c1)/c1), we
have (7/8)τ − (k∗ + 1)∆ > 0,

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤ ec2d , and

Vol({θ̂ : ∥Σ1/2(β̂ − β)∥/γ ≤ (c0 + 2c1)ρ})
Vol({θ̂ : ∥Σ1/2(β̂ − β)∥/γ ≤ c1ρ})

≤ ec2d .

Proof. The proof is similar to the proof of Lemma B.7. The second part of assumption (a) follows from the fact that

Vol({µ̂ : ∥Σ1/2(β̂ − β)∥ ≤ r}) = cd|Σ|rd ,

for some constant cd that only depends on the dimension and selecting c2 ≥ log((c0 + 2c1)/c1). The first part follows from our
choices of c0, c1, τ , ∆ and the following corollary.

Corollary C.10 (Corollary of Lemma C.8). If β̂ ∈ B2τ,S and τ = 42ρ1 then
∣∣ ∥Σ1/2(β̂ − β)∥/γ −DS(β̂)

∣∣ ≤ 14.2ρ1.

Resilience implies bounded local sensitivity We show that resilience implies the assumption (b) in Theorem 15 (Lemma C.14).
Assuming (k∗ + 1)/n ≤ α/2, we show a set S′ with at most k∗ data points arbitrarily changed from S has bounded local
sensitivity. This implies that S′ is a ((1/5.5)α+ (k∗/n), α, ρ1, ρ2, ρ3, ρ4)-corrupt good set with respect to (β,Σ, γ).

Lemma C.11. For an ((1/5.5)α + α̃, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S′ with respect to (β,Σ, γ), α̃ ≤ (1/11)α, and any
unit norm v ∈ Rd, we have 0.9σv ≤ σv(Mv,α) ≤ 1.1σv .

Proof. This follows from Lemma B.9.

Lemma C.12. For an ((1/5.5)α+ α̃, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S′ with respect to (β,Σ, γ), and any unit norm vector
v ∈ Rd, we have 0.99γ ≤ γ̂ ≤ 1.01γ.

Proof. This proof follows from the proof of Lemma C.7.



Lemma C.13. For an ((1/5.5)α + α̃, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S′ with respect to (β,Σ, γ) and α̃ ≤ (1/11)α, if
β̂ ∈ Bt,S′ then we have ∥Σ1/2(β̂ − β)∥/γ ≤ 1.1ρ1 + 1.15t and

∣∣DS′(β̂)− ∥Σ1/2(β̂ − β)∥/γ
∣∣ ≤ 1.1ρ1 + 0.15t.

Proof. It follows from the proof of Lemma C.8.

Lemma C.14. For ∆ = 110ρ1/(αn), τ = 42ρ1, and an ((1/5.5)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good S, if

n = Ω
( log(1/(δζ))

αε

)
,

with a large enough constant then the local sensitivity in assumption (b) is satisfied.

Proof. We follows the proof strategy of Lemma B.11 in Appendix B.2. Consider a dataset S′ which is at Hamming distance at
most (1/11)αn from S and corresponding partition (T ′

v,β̂,α,N
′
v,β̂,α,B

′
v,β̂,α) of S′ for a specific direction v. By resilience

property of the tails in Eq. (34) and Eq. (35), Lemma G.1, and Lemma G.2, we have for any v ∈ Rd with unit norm ∥v∥ = 1 and
any β̂ ∈ Rd,

v⊤ 1
|T ′

v,β̂,α
∩Sgood|

∑
i∈T ′

v,β̂,α
∩Sgood

((
xix

⊤
i − Σ

)
(β − β̂) + xiηi

)
σv

≤

∥∥∥∥∥∥∥Σ−1/2

 1

|T ′
v,β̂,α

∩ Sgood|
∑

i∈T ′
v,β̂,α

∩Sgood

(
xix

⊤
i − Σ

)
(β − β̂)


∥∥∥∥∥∥∥+ (41)

∥∥∥∥∥∥∥Σ−1/2

 1

|T ′
v,β̂,α

∩ Sgood|
∑

i∈T ′
v,β̂,α

∩Sgood

xiηi


∥∥∥∥∥∥∥

≤ 2ρ2
(1/11)α

∥Σ1/2(β − β̂)∥+ 2ρ1
(1/11)α

γ , (42)

where Sgood is the original uncorrupted resilient dataset. Similarly, we have

v⊤ 1
|B′

v,β̂,α
∩Sgood|

∑
i∈B′

v,β̂,α
∩Sgood

((
xix

⊤
i − Σ

)
(β − β̂) + xiηi

)
σv

≤ 2ρ2
(1/11)α

∥Σ1/2(β − β̂)∥+ 2ρ1
(1/11)α

γ .

This implies

min
i∈T ′

v,β̂,α
∩Sgood

v⊤
(
xix

⊤
i (β − β̂) + xiηi

)
σv

− max
i∈B′

v,β̂,α
∩Sgood

ṽ⊤
(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤ 44ρ1
α

γ +
44ρ2
α

∥Σ1/2(β − β̂)∥ . (43)

Analogous to Lemma B.11 , for a neighboring databases S′ and S′′, the corresponding middle sets N ′
v,β̂,α and N ′′

v,β̂,α differ
at most by one entry. Denote those entry by x′i and η′i = y′i − ⟨β, x′i⟩ in N ′

v,β̂,α and x′′j and η′′j in N ′′
v,β̂,α

. Then, from Eq. (43),
we have ∣∣∣v⊤ ((x′ix′⊤i − x′′j x

′′⊤
j

)
(β − β̂) + x′iη

′
i − x′′j η

′′
j

)∣∣∣ ≤ (44ρ1
α

γ +
44ρ2
α

∥Σ1/2(β − β̂)∥
)
σv ,

which implies that∣∣∣∣∣∣∣v⊤
1

(1− (4/5.5)α)n

∑
i∈N ′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
− v⊤

1

(1− (4/5.5)α)n

∑
i∈N ′′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)∣∣∣∣∣∣∣
≤ σv

(1− (4/5.5)α)n

(
44ρ1
α

γ +
44ρ2
α

∥Σ1/2(β − β̂)∥
)
. (44)



By resilience properties in Eq. (28) and Eq. (29), and Lemma G.2, Lemma C.1, and the fact that N ′′
v,β̂,α

∩ Sgood is at least of
size (1− α)n, we have for the data points in N ′′

v,β̂,α
∩ Sgood,

v⊤ 1
|N ′′

v,β̂,α
∩Sgood|

∑
i∈N ′′

v,β̂,α
∩Sgood

(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤ (1 + ρ2)∥Σ1/2(β̂ − β)∥+ ρ1γ .

By Eq. (42), for any x′′i ∈ N ′′
v,β̂,α

∩ Sbad (where Sbad = S′′ \ Sgood) we have

v⊤
(
x′′i x

′′⊤
i (β − β̂) + x′′i η

′′
i

)
σv

≤
v⊤ 1

|T ′′
v,β̂,α

∩Sgood|
∑

i∈T ′′
v,β̂,α

∩Sgood

(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤
(22ρ2

α
+ 1
)
∥Σ1/2(β̂ − β)∥+ 22ρ1

α
γ .

Since |Sbad| ≤ (1.5/5.5)αn and α < c for some small enough constant c, we have

v⊤ 1
(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σv

=
v⊤ 1

(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α
∩Sbad

(
xix

⊤
i (β − β̂) + xiηi

)
σv

+

v⊤ 1
(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α
∩Sgood

(
xix

⊤
i (β − β̂) + xiηi

)
σv

≤ (6ρ2 + (1.5/5.5)α)∥Σ1/2(β̂ − β)∥+ 6ρ1γ

1− (4/5.5)α
+
(
(1 + ρ2)∥Σ1/2(β̂ − β)∥+ ρ1γ

)
≤ 7ρ1γ + (1 + α+ 7ρ2)∥Σ1/2(β̂ − β)∥ . (45)

Analogous to Eq. (19), by using resilience properties in Eqs. (29) and (30), we have

|σ′2
v − σ′′2

v | =
1

(1− (4/5.5)α)n

∣∣∣∣∣∣∣
∑

xi∈N ′
v,β̂,α

⟨v, xi⟩2 −
∑

xi∈N ′′
v,β̂,α

⟨v, xi⟩2

∣∣∣∣∣∣∣
≤ 64 · 112 · ρ23σ2

v

α2(1− (4/5.5)α)n
. (46)



By Eqs. (45), (44), and (46), we have∣∣∣DS′(β̂)−DS′′(β̂)
∣∣∣

≤ max
v:∥v∥=1

∣∣∣∣∣∣∣
v⊤ 1

|N ′
v,β̂,α

|
∑

i∈N ′
v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σ′
vγ̂

′ −
v⊤ 1

|N ′′
v,β̂,α

|
∑

i∈N ′′
v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σ′′
v γ̂

′′

∣∣∣∣∣∣∣
≤ max

v:∥v∥=1

∣∣∣∣∣∣∣∣
v⊤
(

1
(1−(4/5.5)α)n

∑
i∈N ′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
− 1

(1−(4/5.5)α)n

∑
i∈N ′′

v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

))
σ′
vγ̂

′

∣∣∣∣∣∣∣∣
+ max

v:∥v∥=1

v⊤ 1
|N ′′

v,β̂,α
|
∑

xi∈N ′′
v,β̂,α

(
xix

⊤
i (β − β̂) + xiηi

)
σv

∣∣∣∣ σvσ′
vγ̂

′ −
σv
σ′′
v γ̂

′′

∣∣∣∣
≤ 44ρ1

0.9 · 0.99(1− (4/5.5)α)nα
+

44ρ2
0.9 · 0.99(1− (4/5.5)α)nα

∥Σ1/2(β − β̂)∥
γ

+
64 · 112 · ρ23 · 0.02γ

0.93α2(1− (4/5.5)α)n · 0.992γ2
(
7ρ1γ + (1 + α+ 7ρ2)∥Σ1/2(β̂ − β)∥

)
(47)

≤
(
0.12

αn
+

0.016

αn

)
∥Σ1/2(β̂ − β)∥

γ
+

(
9ρ1
αn

+
0.07ρ1
αn

)
≤ 0.2

αn

∥Σ1/2(β̂ − β)∥
γ

+
50ρ1
αn

where the last three inequalities follow from our assumptions that α ≤ c and ρ2 ≤ c, ρ23 ≤ cα, ρ4 ≤ c with a small
enough constant c and Lemma C.12. From Lemma C.13, we know if β̂ ∈ Bτ+(k∗+3)∆,S , we have ∥Σ1/2(β̂ − β)∥/γ ≤
1.1ρ1 + 1.15(τ + (k∗ + 3)∆). We show that ∥Σ1/2(β̂ − β)∥ ≤ 50ρ1γ for the choices of ∆, k∗, τ and n:

1.1ρ1 + 1.15(τ + (k∗ + 3)∆) ≤ 49ρ1 +
50ρ1 log(1/(δζ))

εαn
≤ 50ρ1 ,

where ∆ = 110ρ1/(αn), τ = 42ρ1, k∗ = (2/ε) log(4/(δζ)), ε ≤ log(4/δζ) and n ≥ C ′ log(1/(δζ))/(ε α) for some large
enough universal constant C ′ > 0. This implies

|DS′(β̂)−DS′′(β̂)| ≤ 110ρ1
αn

= ∆ .

Proof of Theorem 12 We show that the sufficient conditions of Theorem 15 are met for the choices of constants and parameters:
p = d, ρ = ρ1, c0 = 31.8, c1 = 10.2, τ = 42ρ1, and ∆ = 110ρ1/(αn). We can set c2 to be a large constant and will only
change the constant factor in the sample complexity. The assumptions (a), (b), and (d) follow from Lemmas C.9, C.14, and C.8,
respectively. The assumption (c) follows from

∆ =
110ρ1
αn

≤ 1.2ρ1ε

32(c2d+ (ε/2) + log(16/(δζ)))
=

(c0 − 3c1)ρε

32(c2p+ (ε/2) + log(16/(δζ)))
,

for large enough n ≥ C ′(d + log(1/(δζ)))/(αε). This finishes the proof of Theorem 12 from which Theorem 11 follows
immediately.

C.3 Step 3: Achievability guarantees
We provide utility guarantees for popular families of distributions studied in the private or robust linear regression literature:
sub-Gaussian (Diakonikolas, Kong, and Stewart 2019; Gao 2020; Zhu, Jiao, and Steinhardt 2019; Cai, Wang, and Zhang 2019;
Wang 2018) and hypercontractive (Zhu, Jiao, and Steinhardt 2019; Klivans, Kothari, and Meka 2018; Cherapanamjeri et al.
2020; Jambulapati et al. 2021; Bakshi and Prasad 2021; Prasad et al. 2018). Similar to mean estimation, the resilience we need
scales with the variance. For sub-Gaussian distributions, this requires a lower bound on the variance of the form σ ⪯ cΓ for the
sub-Gaussian proxy Γ. For the k-th moment bounded distributions, we require hypercontractivity.



Sub-Gaussian distributions The most common scenario in linear regression is when both the input xi and the noise ηi are
sub-Gaussian as we defined in Eq. (21) and independent of each other. The next lemma shows that the resulting dataset is
(O(α log(1/α)), O(α log(1/α)), O(α

√
log(1/α)), O(α log(1/α)))-resilient, which follows from the covariance resilience of

sub-Gaussian distributions.

Lemma C.15 (Resilience for sub-Gaussian samples). Let D1 be a distribution of xi ∈ Rd which is zero mean sub-Gaussian
with covariance Σ and sub-Gaussian proxy 0 ≺ Γ ⪯ cΣ for some constant c. Let D2 be a distribution of ηi ∈ R which
is a zero mean one-dimensional sub-Gaussian with variance γ2 and sub-Gaussian proxy γ20 ≤ cγ2 for some constant c.
A multiset of i.i.d. labeled samples S = {(xi, yi)}ni=1 is generated from a linear model with noise ηi independent of xi:
yi = x⊤i β + ηi , where the input xi and the independent noise ηi are i.i.d. samples from D1 and D2. There exist constants
c1 and c2 > 0 such that, for any α ∈ (0, 1/2), if n ≥ c1((d + log(1/ζ))/(α log(1/α))2) then, with probability 1 − ζ, S is
(α, c2α log(1/α), c2α log(1/α), c2α

√
log(1/α), c2α log(1/α))-resilient with respect to (β,Σ, γ).

Proof. This follows from (Jambulapati, Li, and Tian 2020, Corollary 4). Let x̃i :=
[

Σ−1/2xi
ηi/γ

]
∈ Rd+1. By definition, we

know x̃i can be seen as samples from a zero mean sub-Gaussian distribution with covariance I(d+1)×(d+1). By (Jambulapati, Li,
and Tian 2020, Corollary 4) and union bound, we know if n = Ω(d+ log(1/ζ))/(α log(1/α))2 then there exists a constant C1

such that with probability 1− ζ, for any T ⊂ S and |T | ≥ (1− α)n and any unit vector u ∈ Rd+1, v ∈ Rd, we have∣∣∣∣∣u⊤
(

1

|T |
∑
xi∈T

x̃ix̃
⊤
i − I(d+1)×(d+1)

)
u

∣∣∣∣∣ ≤ C1α log(1/α) , (48)∣∣∣∣∣v⊤
(

1

|T |
∑
xi∈T

Σ−1/2xix
⊤
i Σ

−1/2 − Id×d

)
v

∣∣∣∣∣ ≤ C1α log(1/α) , and (49)∣∣∣∣∣∣ 1

|T |
∑
ηi∈T

η2i
γ2

− 1

∣∣∣∣∣∣ ≤ C1α log(1/α) . (50)

Let u :=

[
u1
u2

]
where u1 ∈ Rd and u2 ∈ R and ∥u1∥2 + u22 = 1. Then Eq. (48) is equivalent to∣∣∣∣∣u⊤1
(

1

|T |
∑
i∈T

Σ−1/2xix
⊤
i Σ

−1/2 − Id×d

)
u1 +

2u2
γ
u⊤1

1

|T |
∑
i∈T

Σ−1/2xiηi +
u22
γ2

1

|T |
∑
i∈T

(η2i − γ2)

∣∣∣∣∣
≤ C1α log(1/α) . (51)

By Eq. (49) and (50), we know∣∣∣∣∣u⊤1 ( 1

|T |
∑
i∈T

Σ−1/2xix
⊤
i Σ

−1/2 − Id×d)u1

∣∣∣∣∣ ≤ C1α log(1/α)∥u1∥2∣∣∣∣∣u22γ2 1

|T |
∑
i∈T

(η2i − γ2)

∣∣∣∣∣ ≤ C1α log(1/α)u22 .

This means

−C1α log(1/α)(1 + ∥u1∥2 + u22) ≤
2u2
γ
u⊤1

1

|T |
∑
i∈T

Σ−1/2xiηi ≤ C1α log(1/α)(1 + ∥u1∥2 + u22) . (52)

For any unit vector w ∈ Rd, let u1 = 0.5w. Thus, we have u22 = 0.75. Eq. (52) implies∣∣∣∣∣ 1γw⊤ 1

|T |
∑
i∈T

Σ−1/2xiηi

∣∣∣∣∣ ≤ C2α log(1/α) , (53)

for some constant C2. This proves the first resilience in Eq. (28). The second, third and fourth resilience properties in Eqs. (29),
(30) and (31) follow from (Dong, Hopkins, and Li 2019, Lemma 4.1), (Jambulapati, Li, and Tian 2020, Corollary 4) and a union
bound.



The above resilience lemma and Theorem 12 imply the following optimal utility guarantee.

Corollary C.16. Under the hypothesis of Lemma C.15, there exists a constant c > 0 such that for any α ∈ (0, c), a sample size
of

n = O
( d+ log(1/ζ)

(α log(1/α))2
+
d+ log(1/(δζ))

αε

)
,

a sensitivity of ∆ = O(log(1/α)/n), and a threshold of τ = O(α log(1/α)) with large enough constants are sufficient for
HPTR(S) with the distance function in Eq. (26) to achieve

1

γ
∥Σ1/2(β̂ − β)∥ = O(α log(1/α)) , (54)

with probability 1 − ζ. Further, the same guarantee holds even if α-fraction of the samples are arbitrarily corrupted as in
Assumption 2.

The sample complexity is nearly optimal. Even for DP linear regression without robustness, HPTR is the first algorithm for sub-
Gaussian distributions with an unknown covariance Σ that up to log factors matches the lower bound of n = Ω̃(d/α2 + d/(αε))
assuming ε < 1 and δ < n−1−ω for some ω > 0 from (Cai, Wang, and Zhang 2019, Theorem 4.1). For completeness, we
provide the lower bound in Appendix H. An existing algorithm for DP linear regression from (Cai, Wang, and Zhang 2019) is
suboptimal as it require Σ to be close to the identity matrix, which is equivalent to assuming that we know Σ.

The error bound is nearly optimal under α-corruption, namely HPTR is the first robust estimator that is both differentially
private and also achieves the near-optimal error rate of (1/γ)∥Σ1/2(β̂−β)∥ = O(α log(1/α)), matching the known information-
theoretic lower bound of (1/γ)∥Σ1/2(β̂ − β)∥ = Ω(α) (Gao 2020) up to a log factor. This lower bound holds for any robust
estimator that is not necessarily private and regardless of how many samples are available. If privacy is not required (i.e., ε = ∞),
a similar guarantee can be achieved by, for example, (Diakonikolas, Kong, and Stewart 2019).

Hypercontractive distributions with independent noise We assume xi and ηi are independent and (κ, k)-hypercontractive
and (κ̃, k)-hypercontractive, respectively, as in Definition B.14. For the necessity of hypercontractive conditions for robust linear
regression, we refer to (Zhu, Jiao, and Steinhardt 2019, Section F.5). The next lemma shows that the the resulting dataset has a
subset of size at least (1− α)n that is (O(α), O(α1−1/k), O(α1−2/k), O(α1−1/k), O(α1−2/k))-resilient.

Lemma C.17 (Resilience for hypercontractive samples). For some integer k ≥ 4 and positive scalar parameters κ and κ̃, let D1

be a (κ, k)-hypercontractive distribution on xi ∈ Rd with zero mean and covariance Σ ≻ 0. Let D2 be a (κ̃, k)-hypercontractive
distribution on ηi ∈ R with zero mean and variance γ2. A multiset of labeled samples S = {(xi, yi)}ni=1 is generated from a
linear model: yi = x⊤i β + ηi, where the input xi and the independent noise ηi are i.i.d. samples from D1 and D2. For any
α ∈ (0, 1/2) and any constant c3 > 0, there exist constants c1 and c2 > 0 that only depend on c3 such that if

n ≥ c1

( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2
+
κ2(1 + κ̃2)d log d

α2/k

)
, (55)

then S is (c3α, α, c2kκκ̃α
1−1/kζ−1/k, c2k

2κ2α1−2/kζ−2/k, c2kκα
1−1/kζ−1/k, c2k

2κ̃2α1−2/kζ−2/k)-corrupt good with re-
spect to (β,Σ, γ) with probability 1− ζ.

Proof. Since of xi and ηi are independent, we know

E
[∣∣∣〈v, γ−1Σ−1/2xη

〉∣∣∣k] = E
[∣∣∣〈v,Σ−1/2x

〉∣∣∣k]E [|γ−1η|k
]
≤ κkκ̃k .

This implies γ−1Σ−1/2xη is a k-th moment bounded distribution with covariance Id×d. By Lemma B.15, under the sample
complexity of (55), with probability 1− 8ζ, there exists a subset Sgood ⊂ S such that |Sgood| ≥ (1− α)n and there exists a
constant C such that for any subset T ⊂ Sgood and |T | ≥ (1− 10α)|Sgood|, we have∥∥∥∥∥ 1

|T |
∑
i∈T

1

γ
Σ−1/2xiηi

∥∥∥∥∥ ≤ Ckκκ̃γα1−1/kζ−1/k . (56)

This proves the first resilience in Eq. (28). The second resilience in Eq. (29), third resilience in Eq. (30) and fourth resilience in
Eq. (31) follow directly from Lemma B.15.

The above resilience lemma and Theorem 12 imply the following utility guarantee. HPTR is naturally robust against
(1/5.5− c3)α-corruption of the data. Choosing appropriate constants, we get the following result.



Corollary C.18. Under the hypothesis of Lemma C.17, there exists a constant c > 0 such that for any α ≤ c and k2κ2α1−2/k ≤ c,
it is sufficient to have a dataset of size

n = O
( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2
+
κ2(1 + κ̃2)d log d

α2/k
+
d+ log(1/δ)

αε

)
, (57)

a sensitivity of ∆ = O(1/(nα1/k)), and a threshold of τ = O(α1−1/k) with large enough constants for HPTR(S) with the
distance function in Eq. (26) to achieve (1/γ)∥Σ1/2(β̂ − β)∥ = O(kκκ̃α1−1/kζ−1/k) with probability 1− ζ . Further, the same
guarantee holds even if α-fraction of the samples are arbitrarily corrupted as in Assumption 2.

The error bound is optimal under α-corruption: namely the error bound (1/γ)∥Σ1/2(β̂ − β)∥ = O(α1−1/k) matches the
lower bound (1/γ)∥Σ1/2(β̂ − β)∥ = Ω(α1−1/k) by (Bakshi and Prasad 2021) where the noise ηi is (1, k)-hypercontractive and
independent of xi, which is also (1, k)-hypercontractive. For completeness, we provide the lower bound in Appendix H. HPTR
is the first algorithm that guarantees both differential privacy and optimal robust error bound of O(α1−1/k) for hypercontractive
distributions. If only robust error bound under α-corruption is concerned, (Zhu, Jiao, and Steinhardt 2019) also achieves the
same optimal error bound, but does not provide differential privacy. Further, in this robust but not private case with ε = ∞, our
sample complexity improves by a factor of α2/k upon the state-of-the-art sample complexity of (Zhu, Jiao, and Steinhardt 2019,
Theorem 3.3) which shows that n = O(d/α2) is sufficient to achieve (1/γ)∥Σ1/2(β̂ − β)∥ = O(α1−1/k).

Remark. Suppose k, κ, κ̃, and ζ are Θ(1). HPTR achieves (1/γ)∥Σ1/2(β̂ − β)∥ = O(α1−1/k) with n = Õ(d/(α2−2/k) + (d+

log(1/δ))/(αε)) samples, where Õ hides logarithmic factors in d. The first term cannot be improved as it matches the first term
of a lower bound of n = Ω̃(d/α2−2/k + d/(α1−1/kε)) from (Cai, Wang, and Zhang 2019, Theorem 4.1), which holds even for
standard non-robust sub-Gaussian (which is (ck, k)-hypercontractive for any k ∈ Z+ and a constant ck that depends only on
k) linear regression with independent noise (see Appendix H for a precise statement). However, we do not have a matching
lower bound for the second term. To the best of our knowledge, HPTR is the first algorithm for linear regression that guarantees
(ε, δ)-DP under hypercontractive distributions with independent noise.

Hypercontractive distributions with dependent noise We assume xi and ηi may be dependent and marginally (κ, k)-
hypercontractive and (κ̃, k)-hypercontractive, respectively, as defined in Definition B.14. In this case, the first resilience
ρ1 that determines the error rate increases from O(α1−1/k) to O(α1−2/k) as a result of the input and the noise being
potentially correlated. The next lemma shows that the the resulting dataset has a subset of size at least (1 − α)n that is
(O(α), O(α1−2/k), O(α1−2/k), O(α1−1/k), O(α1−2/k))-resilient.
Lemma C.19 (Resilience for hypercontractive samples with dependent noise). For some integer k ≥ 4 and positive scalar
parameters κ and κ̃, let D1 be a (κ, k)-hypercontractive distribution on xi ∈ Rd with zero mean and covariance Σ ≻ 0. Let
D2 be a (κ̃, k)-hypercontractive distribution on ηi ∈ R with variance γ2. A multiset of labeled samples S = {(xi, yi)}ni=1 is
generated from a linear model: yi = x⊤i β+ηi, where {(xi, ηi)}i∈[n] are i.i.d. samples from some distribution D whose marginal
distribution for xi is D1, the marginal distribution for ηi is D2, and E[xiηi] = 0. For any α ∈ (0, 1/2) and c3 > 0, there exist
constants c1 and c2 > 0 that only depend on c3 such that if

n ≥ c1

( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−4/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2κ̃2
+
κ2(κ̃2 + 1)d log d

α4/k

)
, (58)

then S is (c3α, α, c2kκκ̃α
1−2/kζ−2/k, c2k

2κ2α1−2/kζ−2/k, c2kκα
1−1/kζ−1/k, c2k

2κ̃2α1−2/kζ−2/k)-corrupt good with re-
spect to (β,Σ, γ) with probability 1− ζ.

Proof. Since ηi and xi are dependent, we can only bound k/2-th moment of γ−1Σ−1/2xη. By Holder inequality, we have

E
[∣∣∣〈v,Σ−1/2γ−1xη

〉∣∣∣k/2] ≤√E
[∣∣〈v,Σ−1/2x

〉∣∣k]E [|γ−1η|k] ≤ κk/2κ̃k/2 .

The rest of the proof follows similarly as the proof of Lemma C.17.

The above resilience lemma and Theorem 12 imply the following optimal utility guarantee achieving an error rate of
O(α1−2/k).

Corollary C.20. Under the hypothesis of Lemma C.19, there exists a constant c > 0 such that for any α ≤ c and k2κ2α1−2/k ≤ c,
it is sufficient to have a dataset of size

n = O
(d+ log(1/δ)

αε
+

d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−4/k(1 + 1/κ̃2)d log d

ζ2−4/kκ2κ̃2
+
κ2(κ̃2 + 1)d log d

α4/k

)
,



a sensitivity ∆ = O(1/(nα2/k)), and a threshold τ = O(α1−2/k), with large enough constants for HPTR(S) with the distance
function in Eq. (26) to achieve (1/γ)∥Σ1/2(β̂−β)∥ = O(kκκ̃α1−2/kζ−2/k) with probability 1−ζ . Further, the same guarantee
holds even if α-fraction of the samples are arbitrarily corrupted as in Assumption 2.

This error rate is optimal in its dependence in α under α-corruption. When ηi and xi are dependent, (Bakshi and Prasad 2021)
gives a lower bound of error rate (1/γ)∥Σ1/2(β̂ − β)∥ = Ω(κ̃α1−2/k) that holds regardless of how many samples we have and
without the privacy constraints. For completeness, we provide the lower bound in Appendix H. If only robust error bound under
α-corruption is concerned, (Zhu, Jiao, and Steinhardt 2019) also achieves the same optimal error bound, but does not provide
differential privacy. Further, in this robust but not private case with ε = ∞, our sample complexity improves by a factor of α2/k

upon the state-of-the-art sample complexity of (Zhu, Jiao, and Steinhardt 2019, Theorem 3.3) which shows that n = O(d/α2) is
sufficient to achieve (1/γ)∥Σ1/2(β̂ − β)∥ = O(α1−2/k).

Remark. Suppose ζ, κ, κ̃, and k are Θ(1). The sample complexity of HPTR is n = Õ((d+ log(1/δ))/α2(1−1/k) + d/(αε)).
The first term has a gap of α−2/k factor compared to the first term of a lower bound of n = Ω̃(d/α2(1−2/k) + d/(α1−2/kε))
from (Cai, Wang, and Zhang 2019, Theorem 4.1), which holds even for standard non-robust sub-Gaussian DP linear regression.
It remains an open question whether this gap can be closed, either by a tighter analysis of the resilience for HPTR or a tighter
analysis for a lower bound.

On the upper bound, the gap comes from the fact that we are ensuring stronger resilience than we need. From Theorem 11, we
know that we require ρ1 ≤ c and ρ23 ≤ cα, and from the optimal error rate, we want ρ1 ≤ cα1−2/k. The resilience we ensure in
Lemma C.19 is (α, ρ1 = α1−2/k, ρ2 = α1−2/k, ρ3 = α1−1/k) which is guaranteeing unnecessarily small ρ2 and ρ3. A similar
slack was also there in mean estimation, which did not affect the final sample complexity. In this case with linear regression and
hypercontractive distributions, it causes sample complexity to be larger. Tighter analysis of the resilience which guarantees larger
ρ2 and ρ3 can improve the the first term in the sample complexity in its dependence on α, but cannot close the α−2/k gap. On the
lower bound, we are using a construction of (Cai, Wang, and Zhang 2019, Theorem 4.1), which uses Gaussian distributions and
an independent noise. One could potentially tighten the lower bound with a construction that uses hypercontractive distributions
and a dependent noise.

For the second term, we provide a nearly matching lower bound of n = Ω(min{d, log(1/δ)}/αε) to achieve (1/γ)∥Σ1/2(β̂−
β)∥2 ≤ O(α2−4/k) in Proposition C.21 proving that it is tight when δ = exp(−Θ(d)). To the best of our knowledge, HPTR is
the first algorithm for linear regression that guarantees (ε, δ)-DP under hypercontractive distributions with dependent noise.
Proposition C.21 (Lower bound of hypercontractive linear regression with dependent noise). For any k ≥ 4, let Pκ,k,Σ,γ2

be a distribution over (xi, ηi) ∈ Rd × R where xi is (κ, k)-hypercontractive with zero mean and covariance Σ, and ηi is
(κ, k)-hypercontractive with zero mean and variance γ2. We observe labelled examples a linear model yi = x⊤i β + ηi with
E[xiηi] = 0 such that β = Σ−1E[yixi] . Let Mε,δ denote a class of (ε, δ)-DP estimators that are measurable functions over n
i.i.d. samples S = {(xi, yi)}ni=1 from a distribution. There exist positive constants c, γ, κ = O(1) such that, for ε ∈ (0, 10),

inf
β̂∈Mε,δ

sup
Σ≻0,P∈Pκ,k,Σ,γ2

1

γ
EPn [∥Σ1/2(β̂(S)− β)∥2] ≥ c min

{(
d ∧ log((1− e−ε)/δ)

nε

)2−4/k

, 1

}
.

Proof. We adopt the same framework as the proof of Proposition B.18. We choose P to be P = PΣ,k. It suffices to construct
index set V and indexed family of distributions PV such that dTV(Pv, Pv′) = α and ρ(βv, βv′) ≥ t where βv is the least square
solution of Pv. By (Acharya, Sun, and Zhang 2021, Lemma 6), there exists a finite set V ⊂ Rd with cardinality |V| = 2Ω(d),
∥v∥ = 1 for all v ∈ V , and ∥v − v′∥ ≥ 1/2 for all v ̸= v′ ∈ V . Let fµ,Σ(x) be density function of N (µ,Σ). We construct a
marginal distribution over Rd as follows,

Dv
x(x) =

 α/2, if x = −α−1/kv ,
α/2, if x = α−1/kv ,
(1− α)f0,Id×d

(x) otherwise ,
. (59)

It is easy to verify that EPv
x
[x] = 0, EPv

x
[xx⊤] = (1 − α)Id×d + α1−2/kvv⊤ and thus 1

2Id×d ⪯ EPv
x
[xx⊤] ⪯ 2Id×d for

α ≤ 1/2. Furthermore, we have

Ex∼Pv
x
[ | ⟨u, x⟩ |k ] ≤ ⟨u, v⟩k + (1− α)ckk = O(1) ,

where we use the fact that there exists a constant ck > 0 such that the k-th moment of Gaussian distribution is bounded by ckk.
Since 1

2Id×d ⪯ EPv
x
[xx⊤] ⪯ 2Id×d, we know x is (O(1), k)-hypercontractive. We construct conditional distribution Dv(y|x)

as follows

y|x =

 −α−1/k if x = −α−1/kv
α−1/k if x = α−1/kv
N (0, 1) otherwise

.



Then we have

βv = Ex∼Pv
x
[xx⊤]−1Ex,y∼Pv

x,y
[xy]

= Ex∼Pv
x
[xx⊤]−1α1−2/kv .

This implies t = minv ̸=v′∈V ∥βv − βv′∥ ≥ 1/2α1−2/k minv ̸=v′∈V ∥v − v′∥ = Ω(α1−2/k). We are left to verify that
η = y − ⟨βv, x⟩ is also hypercontractive:

E[|η|k] = α
∣∣α−1/k − v⊤Ex∼Pv

x
[xx⊤]−1vα1−3/k

∣∣k + (1− α)Ex∼N (0,2Id×d)[|x|
k] = O(1) ,

where we used the fact that k-th moment of standard Gaussian is bounded by some constants Ck > 0 and k = O(1). It is easy to
see that total variation distance dTV(P

v
x,y, P

v′

x,y) = α.
Next, we apply the similar reduction of estimation to testing with this packing V as in the proof of Proposition B.18. For

(ε, δ)-DP estimator β̂, using Theorem B.19, we have

sup
P∈P

EPn [∥Σ(P )1/2(β̂(S)− β(P ))∥2]

≥ 1

|V|
∑
v∈V

EPn
v
[∥Σ(Pv)

1/2(β̂(S)− β(Pv))∥2]

= t2
1

|V|
∑
v∈V

Pv

(
∥Σ(Pv)

1/2(β̂(S)− β(Pv))∥ ≥ t
)

≍ t2
1

|V|
∑
v∈V

Pv

(
∥β̂(S)− β(Pv)∥ ≥ t

)

≳ t2
ed/2 ·

(
1
2e

−ε⌈nα⌉ − δ
1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where β(P ) is the least squares solution of the distribution P , Σ(P ) is the covariance of x from P , and the last inequality follows
from the fact that d ≥ 2. The rest of the proof follows from (Barber and Duchi 2014, Proposition 4). We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
and t = Ω(α1−2/k) for ε ∈ (0, 10), so that

sup
P∈P

EPn [∥Σ(P )(β̂(S)− β(P ))∥2] ≳ α2−4/k .

This means that for all k ≥ 4 there exist some κ, γ = O(1) such that

inf
β̂∈Mε,δ

sup
Σ≻0,P∈Pκ,k,Σ,γ2

EPn [∥Σ1/2(β̂(S)− β(P ))∥2] ≳ min

{(
d ∧ log(1− e−ε/δ)

nε

)2−4/k

, 1

}
,

which completes the proof by noting that γ = Θ(1).

D Covariance estimation
In a standard covariance estimation, we are given i.i.d. samples S = {xi ∈ Rd}i∈[n] drawn from a distribution PΣ,Ψ with zero
mean, an unknown covariance matrix 0 ≺ Σ ∈ Rd×d, and an unknown positive semidefinite matrix Ψ := E[(xi ⊗xi −Σ♭)(xi ⊗
xi − Σ♭)⊤] ∈ Rd2×d2

, where ⊗ denotes the Kronecker product. The fourth moment matrix Ψ will be treated as a linear operator
on a subspace Ssym ⊂ Rd2

defines as Ssym := {M ♭ ∈ Rd2

: M is symmetric} following the definitions and notations from
(Diakonikolas et al. 2018).

Definition D.1. For any matrix M ∈ Rd×d, let M ♭ ∈ Rd2

denote its canonical flattening into a vector in Rd2

, and for any
vector v ∈ Rd2

, let v♯ denote the unique matrix M ∈ Rd×d such that M ♭ = v.
This definition of Ψ as an operator on Ssym is without loss of generality, as in this section we only apply Ψ to flattened

symmetric matrices, and also significantly lightens the notations, for example for Gaussian distributions. All d2 × d2 matrices
in this section will be considered as linear operators on Ssym, and we restrict our support of the exponential mechanism in
RELEASE to be the set of positive definite matrices: {Σ̂ ∈ Rd×d : Σ̂ ≻ 0}.



Lemma D.2 ((Diakonikolas et al. 2018, Theorem 4.12)). If PΣ,Ψ = N (0,Σ) then E[xi ⊗ xi] = Σ♭, and as a matrix in Rd2×d2

,
we have Ψn(i−1)+j,n(k−1)+ℓ = Σi,kΣj,ℓ +Σi,ℓΣj,k for all (i, j, k, ℓ) ∈ [d]4, and as an operator on Ssym, we can equivalently
write it as Ψ = 2(Σ⊗ Σ).

Further, we can assume an invertible operator Ψ and define the Mahalanobis distance for xi ⊗ xi, which is DΨ(Σ̂,Σ) =

∥Ψ−1/2(Σ̂♭ − Σ♭)∥. For Gaussian distributions, for example, we have DΨ(Σ̂,Σ) = (1/
√
2)∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F , where

∥ · ∥F denotes the Frobenius norm of a matrix. This is a natural choice of a distance because the total variation distance between
two Gaussian distributions is dTV(N (0,Σ),N (0,Σ′)) = O(∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F ) (see for example (Kamath et al. 2019,
Lemma 2.9)). We want a DP estimate of the covariance Σ with a small Mahalanobis distance DΨ(Σ̂,Σ). If the sample generating
distribution is not zero-mean, we can either apply a robust mean estimation with a subset of samples to estimate the mean or
estimate the covariance using zero mean samples of the form {xi − xi+⌈n/2⌉}i∈[n/2].

D.1 Step 1: Designing the surrogate DS(Σ̂) for the Mahalanobis distance
To sample only positive definite matrices, we restrict the domain of out score function to be DΣ : {Σ̂ ∈ Rd×d : Σ̂ ≻ 0} → R+,
and assume DΣ(Σ̂) = ∞ for non positive definite Σ̂:

DS(Σ̂) = max
V ∈Rd×d:V ⊤=V,∥V ∥F=1

⟨V, Σ̂⟩ − ΣV (MV,α)

ψV (MV,α)
, (60)

where we define the set MV,α similarly as in Appendix B.1. We consider a projected dataset {⟨V, xix⊤i ⟩}i∈S and parti-
tion S into three sets BV,α, MV,α and TV,α, where BV,α corresponds to the subset of (2/5.5)αn data points with small-
est values in {⟨V, xix⊤i ⟩}i∈S , TV,α is the subset of top (2/5.5)αn data points with largest values, and MV,α is the sub-
set of remaining 1 − (4/5.5)αn data points. For a fixed symmetric matrix V ∈ Rd×d with ∥V ∥F = 1, we define
ΣV (MV,α) =

1
|MV,α|

∑
xi∈MV,α

〈
V, xix

⊤
i

〉
, and ψV (MV,α)

2 = 1
|MV,α|

∑
xi∈MV,α

(〈
V, xix

⊤
i

〉
− ΣV (MV,α)

)2
, which are

robust estimates of the population projected covariance ΣV = ⟨V,Σ⟩ and projected fourth moment ψ2
V = (V ♭)⊤ΨV ♭. Next,

we show that this score function DS(Σ̂) recovers our target error metric DΨ(Σ̂,Σ) = ∥Ψ−1/2(Σ̂♭ − Σ♭)∥ when we substitute
ΣV (MV,α) and ψV (MV,α) with population statistics ΣV and ψV , respectively. This justifies the choice of DS(Σ̂) as discussed
in Appendix B.1.

Lemma D.3. For any 0 ≺ Σ ∈ Rd×d, 0 ≺ Σ̂ and any invertible linear operator Ψ ∈ Rd2×d2

on Ssym, we have

max
V ∈Rd×d:V ⊤=V,∥V ∥F=1

⟨V, Σ̂⟩ − ΣV

ψV
=
∥∥∥Ψ−1/2(Σ̂♭ − Σ♭)

∥∥∥ , (61)

where ΣV = ⟨V,Σ⟩ and ψ2
V = (V ♭)⊤ΨV ♭.

This follows immediately from Lemma B.1.

D.2 Step 2: Utility analysis under resilience
The following resilience property of the dataset is critical in selecting ∆ and τ , and analyzing utility.
Definition D.4 (Resilience). For some α ∈ (0, 1), ρ1 ∈ R+, and ρ2 ∈ R+, we say a set of n data points Sgood is (α, ρ1, ρ2)-
resilient with respect to (Σ,Ψ) if for any T ⊂ Sgood of size |T | ≥ (1 − α)n, the following holds for all symmetric matrix
V ∈ Rd×d with ∥V ∥F = 1: ∣∣∣ 1

|T |
∑
xi∈T

〈
V, xix

⊤
i

〉
− ⟨V,Σ⟩

∣∣∣ ≤ ρ1 ψV , and (62)∣∣∣∣∣ 1

|T |
∑
xi∈T

( 〈
V, xix

⊤
i

〉
− ⟨V,Σ⟩

)2 − ψ2
V

∣∣∣∣∣ ≤ ρ2 ψV . (63)

Note that covariance estimation for {xi} is equivalent to mean estimation for {xi ⊗ xi}. We can immediately apply the
mean estimation utility guarantee in Theorem 9 to show that ∥Ψ−1/2(Σ̂♭ − Σ♭)∥ = O(ρ1) can be achieved with n = O(d2/εα)
samples.
Corollary D.5 (Corollary of Theorem 9). There exist positive constants c and C > 0 such that for any (α, ρ1, ρ2)-resilient
dataset S with respect to (Σ,Ψ) satisfying α < c, ρ1 < c and ρ2 < c, and ρ21 ≤ cα, HPTR with the distance function in
Eq. (60), ∆ = 110ρ1/(αn), and τ = 42ρ1 achieves ∥Ψ−1/2(Σ̂♭ − Σ♭)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d2 + log(1/(δζ))

εα
. (64)



Under Assumption 1 on αcorrupt-corruption and Definition B.3 on corrupt good sets extended to {xi ⊗ xi}ni=1, it follows
from Theorem 10 that the same guarantee holds under an adversarial corruption.
Corollary D.6 (Corollary of Theorem 10). There exist positive constants c and C > 0 such that for any ((1/11)α, α, ρ1, ρ2)-
corrupt good set S with respect to (Σ,Ψ) satisfying α < c, ρ1 < c and ρ2 < c, and ρ21 ≤ cα, HPTR with the distance function
in Eq. (60), ∆ = 110ρ1/(αn), and τ = 42ρ1 achieves ∥Ψ−1/2(Σ̂♭ − Σ♭)∥ ≤ 32ρ1 with probability 1− ζ, if

n ≥ C
d2 + log(1/(δζ))

εα
. (65)

D.3 Step 3: Near-optimal guarantees
Covariance estimation has been studied for Gaussian distributions under differential privacy (Karwa and Vadhan 2017; Kamath
et al. 2019; Aden-Ali, Ashtiani, and Kamath 2020) and robust estimation under α-corruption (Li and Ye 2020; Diakonikolas et al.
2019; Chen, Gao, and Ren 2018; Rousseeuw 1985; Zhu, Jiao, and Steinhardt 2019). Note that from Lemma D.2, we know that
Ψ = 2(Σ⊗ Σ) and the Mahalanobis distance simplifies to DΨ(Σ̂,Σ) = ∥Σ1/2Σ̂Σ−1/2 − Id×d∥F for Gaussian distributions.

Gaussian distributions For Gaussian distributions, the second moment resilience in Eq. (62) is satisfied with ρ1 =
O(α log(1/α)) and the 4th moment resilience in Eq. (63) is satisfied with ρ2 = O(α log2(1/α)).
Lemma D.7 (Resilience for Gaussian). Consider a dataset S = {xi ∈ Rd}ni=1 of n i.i.d. samples from N (0,Σ). If
n = Ω

(
(d2 + log(1/ζ))/(α2 log(1/α))

)
with a large enough constant, then there exists a constant C > 0 such that S is

(α,Cα log(1/α), Cα log2(1/α))-corrupt good with respect to (Σ,Ψ = 2Σ⊗ Σ) with probability 1− ζ.

Proof. Since x is Gaussian, by Lemma D.2, we have Ψ = E[(x ⊗ x − Σ♭)(x ⊗ x − Σ♭)⊤] = 2Σ ⊗ Σ. We can write
ψ2
V = 2Tr(V ⊤ΣV Σ) = 2 ⟨V,ΣV Σ⟩.

Lemma D.8 ((Li and Ye 2020, Lemma B.1) and (Dong, Hopkins, and Li 2019, Fact 4.2)). Let δ > 0 and α ∈ (0, 0.5). A dataset
S = {x1, x2, · · · , xn} consists of n i.i.d. samples from N (0, Id×d). If n = Ω

(
(d2 + log(1/ζ))/(α2 log(1/α))

)
with a large

enough constant, then there exists a universal constant C1 > 0 and C2 > 0 such that with probability 1 − ζ, for any subset
T ⊂ S and |T | ≥ (1− α)n, we have ∥∥∥ 1

|T |
∑
xi∈T

xi ⊗ xi − I♭d×d

∥∥∥ ≤ C1α log(1/α) , and∥∥∥∥∥ 1

|T |
∑
xi∈T

(
xi ⊗ xi − I♭d×d

)(
xi ⊗ xi − I♭d×d

)⊤ − 2Id×d ⊗ Id×d

∥∥∥∥∥ ≤ C2α log(1/α)2 .

By Lemma D.8, we know with probability 1− ζ, for any subset T ⊂ S and |T | ≥ (1− α)n, we have∥∥∥ 1

|T |
∑
xi∈T

(Σ−1/2xi)⊗ (Σ−1/2xi)− I♭d×d

∥∥∥ ≤ C1α log(1/α) .

This is equivalent to ∣∣∣(V ♭)⊤
1

|T |
∑
xi∈T

(Σ−1/2 ⊗ Σ−1/2)(xi ⊗ xi)− (V ♭)⊤I♭d×d

∣∣∣ ≤ C1α log(1/α) ,

for any ∥V ∥F = 1. This implies∣∣∣(V ♭)⊤
1

|T |
∑
xi∈T

(xi ⊗ xi)− (V ♭)⊤(Σ⊗ Σ)1/2I♭d×d

∣∣∣ ≤ C1α log(1/α)
√

(V ♭)⊤(Σ⊗ Σ)V ♭ ,

which is also equivalent to, for some constant C∣∣∣∣∣
〈
V,

1

|T |
∑
xi∈T

xix
⊤
i

〉
− ⟨V,Σ⟩

∣∣∣∣∣ ≤ Cα log(1/α)
√

2 ⟨V,ΣV Σ⟩ ,

which proves the first resilience Eq. (62) in Definition D.4.
Similarly, by Lemma D.8, we have∥∥∥∥∥ 1

|T |
∑
xi∈T

(
Σ−1/2xi ⊗ Σ−1/2xi − I♭d×d

)(
Σ−1/2xi ⊗ Σ−1/2xi − I♭d×d

)⊤ − 2Id×d ⊗ Id×d

∥∥∥∥∥ ≤ C2α log(1/α)2 .



This is equivalent to for any ∥V ∥F = 1,∣∣∣ 1

|T |
∑
xi∈T

〈
V ♭,Σ−1/2xi ⊗ Σ−1/2xi − I♭d×d

〉2
− 2
∣∣∣ ≤ C2α log(1/α)2 .

This implies ∣∣∣ 1

|T |
∑
xi∈T

〈
V ♭, xi ⊗ xi − Σ♭

〉2
− 2(V ♭)⊤(Σ⊗ Σ)V ♭

∣∣∣ ≤ C2α log(1/α)2 ⟨V,ΣV Σ⟩ ,

which is also equivalent to, for some constant C∣∣∣ 1

|T |
∑
xi∈T

( 〈
V, xix

⊤
i

〉
− ⟨V,Σ⟩

)2 − 2Tr(V ⊤ΣV Σ)
∣∣∣ ≤ 2Cα log(1/α)2 ⟨V,ΣV Σ⟩ ,

which proves the second resilience Eq. (63) in Definition D.4.

The second and fourth moment resilience properties of Gaussian distributions in Lemma D.7, together with the utility analysis
of HPTR in Corollary. D.6, implies the following utility guarantee.
Corollary D.9. Under the hypotheses of Lemma D.7 there exists a constant c > 0 such that for any α ∈ (0, c), a dataset of size

n = O
( d2 + log(1/ζ)

α2 log(1/α)
+
d2 + log(1/(δζ))

αε

)
,

a sensitivity of ∆ = O(log(1/α)/n), and a threshold τ = O(α log(1/α)) with large enough constants are sufficient for
HPTR(S) with a choice of distance function in Eq. (60) to achieve

∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F = O(α log(1/α)) , (66)

with probability 1 − ζ. Further, the same guarantee holds even if α-fraction of the samples are arbitrarily corrupted as in
Assumption 1.

This Mahalanobis distance guarantee (for the Kronecker product, {xi⊗xi}, of the samples) implies that the predicted Gaussian
distribution is close to the sample generating one in total variation distance (see for example (Kamath et al. 2019, Lemma 2.9)):
dTV(N (0, Σ̂),N (0,Σ)) = O(∥Σ−1/2Σ̂Σ−1/2 − Id×d∥F ) = O(α log(1/α)). This relation also implies that the error bound is
near-optimal under α-corruption, matching a lower bound up to a factor of O(log(1/α)). Even if DP is not required and we are
given infinite samples, an adversary can move α fraction of the probability mass to switch a Gaussian distribution into another
one at Mahalanobis distance ∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id×d∥F = Ω(α). Hence, we cannot tell which of the two distributions the

(potentially infinite) samples came from.
The sample complexity is near-optimal, matching a lower bound up to a factor of O(log(1/α)) when δ = e−Θ(d2).

For a constant ζ, HPTR requires n = O(d2/(α2 log(1/α)) + d2/(αε) + log(1/δ)/(αε)). This nearly matches a lower
bound (that holds even if there is no corruption) on n to achieve the guarantee of Eq. (66): n = Ω(d2/(α log(1/α))2 +
min{d2, log(1/δ)}/(εα log(1/α)) + log(1/δ)/ε). The first term follows from the classical estimation of the covariance without
DP, and matches the first term in our upper bound up to a O(log(1/α)) factor. The second term follows from extending the
lower bound in (Kamath et al. 2019) constructed for pure differential privacy with δ = 0 and matches the second term in our
upper bound up to a O(log(1/α)) factor when δ = e−Θ(d2). The last term is from (Karwa and Vadhan 2017) and has a gap of
O(1/α) factor compared to the third term in our upper bound, but this term is typically not dominating when δ is large enough:
δ = e−O(d2). We note that a slightly tighter upper bound is achieved by the state-of-the-art algorithm in (Aden-Ali, Ashtiani, and
Kamath 2020) that only requires O(d2/(α log(1/α))2 + d2/(εα log(1/α)) + log(1/δ)/ε).

If privacy is not concerned (i.e., ε = ∞), HPTR achieves the error in Eq. (66) with n = O(d2/α2 log(1/α)) samples. There
are polynomial time estimators achieving the same guarantee (Li and Ye 2020; Diakonikolas et al. 2019). The gap of log(1/α) to
the lower bound in the error can be tightened using algorithms that are not computationally efficient as shown in (Chen, Gao, and
Ren 2018; Rousseeuw 1985).

Remark. When we only have a sample size of n = O(d/α2), our analysis does not provide any guarantees. However,
for robust covariance estimation under α-corruption, one can still guarantee a bound on a weaker error metric in spectral
norm: ∥Σ−1/2Σ̂Σ−1/2 − Id×d∥ = O(α log(1/α)) (Zhu, Jiao, and Steinhardt 2019, Theorem 3.4). There is no corresponding
differentially private covariance estimator in that small sample regime. A promising direction is to apply HPTR framework,
but designing a score function for this spectral norm distance that only depends on one-dimensional robust statistics remains
challenging.



E Principal component analysis
In Principal Component Analysis (PCA), we are given i.i.d. samples S = {xi ∈ Rd}ni=1 drawn from a zero mean distribution
PΣ with an unknown covariance matrix Σ. We want to find a top eigenvector of Σ, u ∈ argmax∥v∥=1 v

⊤Σv, privately. The
performance of our estimate û is measured by how much of the covariance is captured in the direction û relative to that of u:
DΣ(û) = 1 − (û⊤Σû/u⊤Σu), where u is one of the top eigenvector of Σ. When the mean is not zero, this can be handled
similarly as in covariance estimation in Appendix D.

E.1 Step 1: Designing the surrogate score function DS(û)

It is straightforward to design a score function of DS : S(d−1) → R+ where S(d−1) is the unit sphere in Rd,

DS(û) = 1− û⊤Σ(Mû,α)û

maxv∈Rd:∥v∥=1 v⊤Σ(Mv,α)v
, (67)

where Mû,α ⊂ S is the subset of data points corresponding to the smallest (1 − (2/3.5)α)n values in the projected set
Sû = {⟨û, xi⟩2}xi∈S and Σ(Mû,α) = (1/|Mû,α|)

∑
xi∈Mû,α

xix
⊤
i . Note that when we replace Σ(Mû,α) with the population

covariance matrix Σ, we recover the target error metric of DΣ(û) = 1− (û⊤Σû/max∥v∥=1 v
⊤Σv). For this choice of DS(û),

the support of the exponential mechanism is already compact, and we do not restrict it any further, say, to be in Bτ,S . This
simplifies the HPTR algorithm and also the analysis as follows. We define

UNSAFEε =
{
S′ ⊂ Rd×n | ∃S′′ ∼ S′ and ∃E such that Pû∼r(ε,∆,S′′)(û ∈ E) > eεPû∼r(ε,∆,S′)(û ∈ E)

or Pû∼r(ε,∆,S′)(û ∈ E) > eεPû∼r(ε,∆,S′′)(û ∈ E)
}
.

Note that sine the support is the same for all S, we can achieve a stronger pure DP with δ = 0 in the exponential mechanism.
However, we still need δ > 0 in the TEST step. HPTR for PCA proceeds as follows:

1. PROPOSE: Propose a target sensitivity bound ∆ = 80ρ2/(αn).
2. TEST:

2.1. Compute the safety margin m = minS′ dH(S, S′) such that S′ ∈ UNSAFEε/2.
2.2. If m̂ = m+ Lap(2/ε) < (2/ε) log(2/δ) then output ⊥, and otherwise continue.

3. RELEASE: Output û sampled from a distribution with a pdf:

r(ε,∆,S)(û) =
1

Z
exp

(
− ε

4∆
DS(û)

)
,

from S(d−1) = {û ∈ Rd : ∥û∥ = 1} where Z =
∫
S(d−1) exp{−(εDS(û))/(4∆)} dû.

The choice of ρ2 depends on your hypothesis on the tail of the sample generating distribution, and α depends on the target
accuracy as guided by Theorem 13 (or the fraction of adversarial corruption in the case of outlier robust PCA setting in
Theorem 14). The target privacy guarantee determines (ε, δ).

E.2 Step 2: Utility analysis under resilience
The following resilience properties are critical in selecting the sensitivity ∆ and also in analyzing the utility.

Definition E.1 (Resilience for PCA). For some ρ1 ∈ R+, ρ2 ∈ R+ we say a set of n data points Sgood = {xi ∈ Rd}ni=1 is
(α, ρ1, ρ2)-resilient with respect to Σ for some positive semidefinite Σ ∈ Rd×d if for any T ⊂ Sgood of size |T | ≥ (1− α)n, the
following holds for all v ∈ Rd with ∥v∥ = 1: ∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩
∣∣∣ ≤ ρ1 σv and (68)

∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩2 − σ2
v

∣∣∣ ≤ ρ2 σ
2
v . (69)

where σ2
v = v⊤Σv.

We refer to Appendix B.2 for the explanation of how resilience is fundamentally connected to sensitivity. For an example of a
Gaussian distribution, the samples are (α,O(α

√
log(1/α)), O(α log(1/α)))-resilient (with a large enough n). We show next

how resilience implies an error bound for HPTR, which is O(α log(1/α)) for Gaussian distributions.



Theorem 13. There exist positive constants c and C such that for any (α, ρ1, ρ2)-resilient set S with respect to some Σ and
satisfying α < ρ2 < c, HPTR Appendix E.1 for PCA with the choices of the distance function in Eq. (67) and ∆ = 80ρ2/(αn)
achieves 1− (û⊤Σû/∥Σ∥) ≤ 20ρ2 with probability 1− ζ, if

n ≥ C

(
log(1/(δζ)) + d log(1/ρ2)

εα

)
. (70)

We discuss the implications of this result in Appendix E.3 for specific instances of the problem. Under Assumption 1 on
αcorrupt-corruption of the data and Definition B.3 on the corrupt good sets, we show that HPTR is also robust against corruption.

Theorem 14. There exist positive constants c and C such that for any ((2/7)α, α, ρ1, ρ2)-corrupt good set S with respect to
some Σ satisfying α < rho2 < c, HPTR in Appendix E.1 for PCA with the choices of the distance function in Eq. (67) and
∆ = 80ρ2/(αn) achieves 1− (û⊤Σû/∥Σ∥) ≤ 20ρ2 with probability 1− ζ, if

n ≥ C

(
log(1/(δζ)) + d log(1/ρ2)

εα

)
. (71)

We provide a proof of the robust and DP PCA in Appendix E.2, where Theorem 13 follows immediately by selecting α as a
free parameter. As the HPTR Appendix E.1 for PCA is significantly simpler, we do not apply the general analysis in Theorem 15
and instead we prove The above theorem directly. To this end, we first show a bound on sensitivity and next show that safety test
succeeds with high probability in Appendix E.2.

Resilience implies bounded local sensitivity Given the resilience properties of a corrupt good set S, we show that the
sensitivity of DS(û) is bounded by ∆.

Lemma E.2. Suppose α ≤ c for some small enough constant c. For ∆ = 80ρ2/(αn), and a ((2/7)α, α, ρ1, ρ2)-corrupt good S,
if

n = Ω
( log(1/(δζ))

αε

)
,

with a large enough constant then the for all S′ within Hamming distance k∗ = (2/ε) log(4/(ζδ)) from S, we have

max
S′′∼S′

|DS′′(û)−DS′(û)| ≤ ∆ , (72)

for all unit vector û and all neighboring dataset S′′.

Proof. The proof is similar to the proof of Lemma B.11. We first assume (k∗ + 1)/n ≤ α/7, which requires n =
Ω(log(1/δζ))/(αε) with a large enough constant. This implies that S′ is a ((3/7)α, α, ρ1, ρ2)-corrupt good set. The rest of this
proof is under this assumption. Let Tû,α(S′) ⊂ S be the subset of data points corresponding to the largest (2/3.5)αn values in
the projected set S′

û = {⟨û, xi⟩2}xi∈S′ . Recall that Sgood is the original resilient dataset before corruption by an adversary. From
Lemma B.4 and the fact that |Sgood ∩ Tû,α(S′)| ≥ (1/7)αn, it follows that (1/|Sgood ∩ Tû,α(S′)|)

∑
xi∈Sgood∩Tû,α

⟨û, xi⟩2 ≤
(1 + (2ρ2)/((1/7)α))σ

2
û, where σû =

√
û⊤Σû. This implies

min
xi∈Sgood∩Tû,α

⟨û, xi⟩2 ≤
(
1 +

2ρ2
(1/7)α

)
σ2
û . (73)

Let Mû,α(S
′) be the remaining subset of S′ with (1 − (2/3.5)α)n smallest values in {(⟨û, xi⟩)2}i∈[n]. Mû,α(S

′) and
Mû,α(S

′′) can differ at most by one data point. Let x′ and x′′ be the unique pair of data points that are in Mû,α(S
′) and

Mû,α(S
′′), respectively. If there is no such pair, then the two filtered subsets are the same and the following claims are trivially

true.
If ⟨û, x′′⟩2 ≤ maxxi∈Mû,α(S′) ⟨û, xi⟩

2 ≤ minxi∈Sgood∩Tû,α(S′) ⟨û, xi⟩
2, we have | ⟨û, x′⟩2 − ⟨û, x′′⟩2 | ≤ (1 + 14ρ2/α)σ

2
û,

where σ2
û = û⊤Σû. If ⟨û, x′′⟩2 > maxxi∈Mû,α(S′) ⟨û, xi⟩

2, then x′′ is at most ⟨û, x′′⟩2 ≤ minxi∈Sgood∩Tû,α(S′)⟨û, xi⟩2, where
equality holds if the smallest point in the top subset enters Mû,α(S

′′). This also implies | ⟨û, x′⟩2−⟨û, x′′⟩2 | ≤ (1+14ρ2/α)σ
2
û.

Let σ′2
v = v⊤Σ(Mv,α(S

′))v and σ′′2
v = v⊤Σ(Mv,α(S

′′))v, then for any ∥v∥ = 1,

∣∣σ′2
v − σ′′2

v

∣∣ =

∣∣∣∣∣∣v⊤
 1

(1− (2/3.5)α)n

∑
xi∈Mv,2α(S′)

xix
⊤
i − 1

(1− (2/3.5)α)n

∑
xi∈Mv,2α(S′′)

xix
⊤
i

 v

∣∣∣∣∣∣
≤ 2

n
|⟨v, x′⟩2 − ⟨v, x′′⟩2| ≤ 2

n

(
1 +

14ρ2
α

)
v⊤Σv ,



for α ≤ c small enough. Then for the local sensitivity, we have

|DS′(û)−DS′′(û)| ≤
∣∣∣ σ′2

û − σ′′2
û

max∥v∥=1 σ′2
v

∣∣∣+ ∣∣∣ σ′′2
û

max∥v∥=1 σ′2
v

− σ′′2
û

max∥v∥=1 σ′′2
v

∣∣∣
≤ 2

n

(
1 +

14ρ2
α

) û⊤Σû
0.9∥Σ∥

+
1.1û⊤Σû

0.92∥Σ∥2
2

n

(
1 +

14ρ2
α

)
∥Σ∥ ,

where we used the resilience in Eq. (69) with small enough ρ2 ≤ c such that 0.9v⊤Σv ≤ σ′2
v ≤ 1.1v⊤Σv and 0.9v⊤Σv ≤

σ′′2
v ≤ 1.1v⊤Σv (which follow from Lemma E.4). When ρ2 ≤ α, this is bounded by |DS′ û)−DS′′(û)| ≤ 80ρ2/(αn) = ∆.

Since the support is the same for all exponential mechanisms regardless of the dataset, sensitivity bound immediately implies
safety. The following lemma shows that we have sufficient safety margin to succeed with probability at least 1 − ζ, since
k∗ = (2/ε) log(4/(δζ)) and the threshold is (2/ε) log(2/δ).

Lemma E.3. Under the hypothesis of Lemma E.2, for any S′ at Hamming distance at most k∗ from S, we have S′ ∈ SAFEε/2.

Proof of Theorem 14 This proof is similar as the proof of a universal utility analysis in Theorem 15. First, we show we pass
the safety test with high probability. By Lemma E.3, we know m > k∗ = 2/ε log(4/(ζδ)). Then we have

P (output ⊥) = P (m+ Lap(2/ε) < (2/ε) log(2/δ)) ≤ ζ

2
.

Next, we assume the dataset passed the safety test and show that Pû∼r(ε,∆,S)
(û⊤Σû ≥ (1− 4ρ2)∥Σ∥) ≥ 1− ζ/2.

Lemma E.4. For an ((2/7)α, α, ρ1, ρ2)-corrupt good set S with respect to Σ, then |û⊤Σû− û⊤Σ(Mû,α)û| ≤ 4ρ2û
⊤Σû.

Proof. We have

|û⊤Σû− û⊤Σ(Mû,α)û| =
|
∑

i∈Mû,α
(⟨û, xi⟩2 − σ2

û)|
(1− (2/3.5)α)n

≤
|
∑

i∈Mû,α∩Sgood
(⟨û, xi⟩2 − σ2

û)|
(1− (2/3.5)α)n

+
|
∑

i∈Mû,α∩Sgood
(⟨û, xi⟩2 − σ2

û)|
(1− (2/3.5)α)n

(74)

For i ∈ Mû,α ∩ Sbad, by Lemma B.4, we have

| ⟨û, xi⟩2 − σ2
û| ≤ max

{∑
i∈Tû,α∩Sgood

(⟨û, xi⟩2 − σ2
û)

|Tû,α ∩ Sgood|
, σ2

û

}

≤ 2ρ2σ
2
û

(1/3.5)α
, (75)

where in the last inequality, we applied our assumption that ρ2 ≥ α.
By the resilience property Eq. (69) on Mû,α ∩ Sgood, we also have

|
∑

i∈Mû,α∩Sgood
(⟨û, xi⟩2 − σ2

û)|
|Mû,α ∩ Sgood|

≤ ρ2σ
2
û . (76)

Plugging Eq. (75) and (76) into (74), we have

|û⊤Σû− û⊤Σ(Mû,α)û| ≤
2ρ2σ

2
û + (1− (2/3.5)α)ρ2σ

2
û

1− (2/3.5)α
≤ 4ρ2σ

2
û ,

for α ≤ c small enough.

This implies |DΣ(û)−DS(û)| ≤ 4ρ2 for an ((2/7)α, α, ρ1, ρ2)-corrupt good set S.
Let µ(·) denote the uniform measure on the unit sphere. By the fact that for any 0 < r < 2, a cap of radius r on the

(d − 1)-dimensional unit sphere S(d−1) has measure at least (1/2)(r/2)d−1 from, for example (Kapralov and Talwar 2013,
Fact 3.1), we have for some constant c2 > 0 and ρ2 ≤ 1/8,

µ({v ∈ Rd : v⊤Σv ≥ (1− 4ρ2)∥Σ∥, ∥v∥ = 1}) ≥
(
cos−1(1− 4ρ2)/2

)d−1 ≥ e−c2d log(1/ρ2) . (77)



By Lemma E.4, the choice of ∆ = 80ρ2/(αn), we have

Pû∼r(ε,∆,S)

(
∥Σ∥ − û⊤Σû ≤ 4ρ2∥Σ∥

)
=

∫
{v∈Rd:v⊤Σv≥(1−4ρ2)∥Σ∥,∥v∥=1}

r(ε,∆,S)(û) dµ̂

≥ Vol({v ∈ Rd : v⊤Σv ≥ (1− 4ρ2)∥Σ∥, ∥v∥ = 1}) min
µ̂∈{v∈Rd:v⊤Σv≥(1−4ρ2)∥Σ∥,∥v∥=1}

r(ε,∆,S)(û)

≥ Vol(S(d−1))µ({v ∈ Rd : v⊤Σv ≥ (1− 4ρ2)∥Σ∥, ∥v∥ = 1}) min
û∈{v∈Rd:v⊤Σv≥(1−4ρ2)∥Σ∥,∥v∥=1}

r(ε,∆,S)(û)

≥ Vol(S(d−1)) e−c2d log(1/ρ2)
1

Z
exp

{
− ε

4∆
max

∥û∥=1,4ρ2≥1− û⊤Σû
∥Σ∥

1− û⊤Σ(Mû,α)û

∥Σ∥

}
≥ Vol(S(d−1)) e−c2d log(1/ρ2)

1

Z
exp

{
− αεn

40

}
,

and similarly,

Pû∼r(ε,∆,S)

(
∥Σ∥ − û⊤Σû ≥ 20ρ2∥Σ∥

)
≤ Vol(S(d−1)) max

û∈{v∈Rd:v⊤Σv≤(1−20ρ2)∥Σ∥,∥v∥=1}
r(ε,∆,S)(û)

≤ Vol(S(d−1))
1

Z
e−εαn(20ρ2−4ρ2)∥Σ∥/(320ρ2∥Σ∥)

≤ Vol(S(d−1))
1

Z
exp

{
− αεn

20

}
This implies

log

(
Pû∼r(ε,∆,S)

(
λ1 − û⊤Σû ≤ 4ρ2∥Σ∥

)
Pû∼r(ε,∆,S)

(λ1 − û⊤Σû ≥ 20ρ2∥Σ∥)

)
≥ εαn

40
− c2d log(1/ρ2) .

If we set n = Ω
(

log(1/ζ)+d log(1/ρ2)
εα

)
, we get

Pû∼r(ε,∆,S)

(
λ1 − û⊤Σû ≤ 4ρ2λ1

)
Pû∼r(ε,∆,S)

(λ1 − û⊤Σû ≥ 20ρ2λ1)
≥ 2

ζ
,

which completes the proof.

E.3 Step 3: Achievability guarantees
We provide utility guarantees for private PCA for sub-Gaussian and hypercontractive distributions.

Sub-Gaussian distributions Using the resilience of sub-Gaussian distributions with respect to (µ = 0,Σ) in Lemma B.12,
which is the same as the resilience properties we need for PCA in Definition E.1, Theorem 14 implies the following corollary.

Corollary E.5. Under the hypothesis of Lemma B.12 with µ = 0 and any PSD matrix Σ ∈ Rd×d, there exist universal constants
c and C > 0 such that for any α ∈ (0, c), a dataset of size

n = O

(
d+ log(1/ζ)

(α log(1/α))2
+

log(1/(δζ)) + d log(1/(α log(1/α)))

εα

)
,

and sensitivity of ∆ = O(log(1/α)/n) with large enough constants are sufficient for HPTR(S) in Appendix E.1 for PCA with
the choices of the distance function in Eq. (67) to achieve

1− û⊤Σû

∥Σ∥
≤ Cα log(1/α) , (78)

with probability 1 − ζ. Further, the same guarantee holds even if α-fraction of the samples are arbitrarily corrupted as in
Assumption 1.

The error bound is near-optimal under α-corruption, matching a lower bound up to a factor of O(log(1/α)). HPTR is the
first estimator that guarantees (ε, δ)-DP and also achieves the robust error rate of 1 − û⊤Σû/∥Σ∥ = O(α log(1/α)), nearly
matching the information theoretic lower bound of 1− û⊤Σû/∥Σ∥ = Ω(α). This lower bound, which can be easily constructed
using N (0, I+ αe1e

⊤
1 ) and N (0, I+ αe2e

⊤
2 ), holds for any estimator that is not necessarily private and regardless of how many



samples are available. If privacy is not required, near-optimal robust error rate can be achieved by outlier-robust PCA approaches
in (Kong et al. 2020; Jambulapati, Li, and Tian 2020).

The sample complexity is near-optimal, matching a lower bound up to a factor of O(log(1/α)) when δ = e−Θ(d). Even for
DP PCA without corrupted samples, HPTR is the first estimator for sub-Gaussian distributions to nearly match the information-
theoretic lower bound of n = Ω(d/(α log(1/α))2 +min{d, log((1− e−ε)/δ)}/(εα log(1/α))) to achieve the error in Eq. (78).
The first term is unavoidable as even without DP and robustness, when the data comes from a Gaussian distribution, estimating
the principal component up to error α log(1/α) requires Ω(d/(α log(1/α))2) samples (Proposition E.7). The second term in the
lower bound follows from Proposition E.6, which matches the second term in the upper bound up to a factor of O(log(1/α))
when δ = e−Θ(d) and ε > 0. Existing DP PCA approaches from (Chaudhuri, Sarwate, and Sinha 2013; Kapralov and Talwar
2013; Dwork et al. 2014) are designed for arbitrary samples not necessarily drawn i.i.d., and hence require a larger samples size
of n = Õ(d/α2 + d1.5

√
log(1/δ)/(αε)) i.i.d. samples from a Gaussian distribution to achieve the guarantee in Eq. (78), where

Õ hides polylogarithmic terms in 1/α and 1/ζ.

Remark. Rank-k PCA under α-corruption from a Gaussian dataset is of great practical interest. An outlier-robust PCA algorithm
in (Kong et al. 2020, Appendix D) outputs an orthonormal matrix Û ∈ Rd×k achieving

Tr(U⊤
k ΣUk)− Tr(Û⊤ΣÛ) = O

(
αTr(U⊤

k ΣUk) + νk1/2α log(1/α)
)
,

where Uk ∈ argmaxU⊤U=Ik×k
U⊤ΣU and ν2 = maxV ∈Rd×d,∥V ∥F=1,V=V ⊤,rank(V )≤k⟨V,ΣV Σ⟩. It is a promising direction

to design a DP rank-k PCA algorithm by applying the HPTR framework that can achieve a similar error rate. It is not immediate
how to design an appropriate score function for general rank k, and a simple technique of peeling off rank-one components
one-by-one (using the rank-one PCA with HPTR) will not achieve the target error bound.
Proposition E.6 (Lower bound for private sub-Gaussian PCA). Let PΣ be the set of zero-mean sub-Gaussian distributions with
covariance Σ ∈ Rd×d. Let Mε,δ be a class of (ε, δ)-DP, d-dimensional estimators of the top principal component of Σ using n
i.i.d. samples from P ∈ PΣ. Then, for ε ∈ (0, 10), there exists a universal constant c > 0 such that

inf
û∈Mε,δ

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û(S)⊤Σû(S)

∥Σ∥

]
≥ c ·min

{
d ∧ log((1− e−ε)/δ)

nε
, 1

}
.

Proof. We adopt the same proof strategy as the proof of Proposition B.18 for mean estimation. By (Acharya, Sun, and Zhang
2021, Lemma 6), there exists a finite index set V ⊂ Rd with cardinality |V| = 2Ω(d), ∥v∥ = 1 for all v ∈ V and ∥v − v′∥ ≥ 1/2
for all v ̸= v′ ∈ V . For each v ∈ V , we define Σv := Id×d + αvv⊤ and Pv := N (0,Σv) for some α ∈ (0, 1/2). It is easy to see
that Id×d ⪯ Σv ⪯ 3Id×d/2 and the top eigenvector of Σv is v. For v ̸= v′ ∈ V , we know ∥Σ−1/2

v′ ΣvΣ
−1/2
v′ − Id×d∥F = O(α).

By (Kamath et al. 2019, Lemma 2.9), this implies dTV(N (0,Σv),N (0,Σ′
v)) = O(α).

Since ∥v − v′∥ ≥ 1/2, we have

DΣv′ (v) = 1− v⊤Σ′
vv

∥Σv′∥
= 1− 1 + α ⟨v, v′⟩2

1 + α
≥ α

8(1 + α)
>

α

12
.

The principal component estimation problem can be reduced to a testing problem with this packing V . For (ε, δ)-DP estimator
û, using Lemma B.19, let t = α1−2/k

12 , we have

sup
P∈PΣ

ES∼Pn [DΣ(û)] ≥ 1

|V|
∑
v∈V

ES∼Pn
v
[DΣv

(û)]

=
1

|V|
∑
v∈V

Pv (DΣv (û) ≥ t)

≳ t
ed/2 ·

(
1
2e

−ε⌈nα⌉ − δ
1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where the last inequality follows from the fact that d ≥ 2. The rest of the proof follows from (Barber and Duchi 2014, Proposition
4). We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
so that

sup
P∈PΣ

ES∼Pn [DΣv (û)] ≳ α .



This implies, for t = α/12 and ε ∈ (0, 10),

inf
û∈Mε,δ

sup
Σ≻0,P∈PΣ

ES∼Pn [DΣ(û)] ≳ min

{
d ∧ log((1− e−ε)/δ)

nε
, 1

}
,

which completes the proof.

It is well known that even for Gaussian distribution, learning the principal component up to error α requires Ω(d/α2). We
provides a lower bound proof here for completeness.

Proposition E.7 (Sample Complexity Lower bound for PCA). Let PΣ be the set of zero-mean Gaussian distributions with
covariance Σ ∈ Rd×d. Let Md be the class of estimators of the d-dimensional top principal component of Σ using n i.i.d. samples
from P ∈ PΣ. There exists a universal constant c > 0 such that

inf
û∈Md

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û(S)⊤Σû(S)

∥Σ∥

]
≥ c ·min

{√
d

n
, 1

}
.

Proof. The following proposition will help us prove a minimax lower bound on estimating ∥Σ∥. Let us first define some
notations.

Definition E.8 (Definition 3.1 in (Diakonikolas, Kane, and Stewart 2017)). For a distribution A on the real line with probability
density function A(x) and a unit vector v ∈ Rd, consider the distribution over Rn with probability density function Pv(x) =
A(v⊤x) exp(−∥x− (v⊤x)v∥22/2) · (2π)−(d−1)/2

Proposition E.9 (Proposition 7.1 in (Diakonikolas, Kane, and Stewart 2017)). Let A be a distribution on R such that A has
mean 0 and χ2(A,N(0, 1)) is finite. Then, there is no algorithm that, for any d, given n < d/(8χ2(A,N(0, 1))) samples from
a distribution D over Rd which is either N(0, I) or Pv, for some unit vector v ∈ Rd, correctly distinguishes between the two
cases with probability at least 2/3.

To apply Proposition E.9, let A be Gaussian distribution N (0, 1 + α). Through simple calculation, it can be shown that
χ2(N (0, 1),N (0, 1 + α)) = 1√

1−α2
− 1 ≤ α2 whenever α2 ≤ 1/2. Then for the first case in Proposition E.9, ∥Σ∥ = ∥I∥ = 1,

the second case has ∥Σ∥ = 1 + α, and Proposition E.9 implies there exists absolute constant c such that

inf
λ̂

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− λ̂(S)

∥Σ∥

]
≥ c ·min

{√
d

n
, 1

}
.

Since we can turn a principal component estimator u(S) into an estimator of ∥Σ∥ through n additional fresh samples to estimate
u(S)⊤Σu(S) up to a minor multiplicative error O(1/

√
n). This implies there exists a universal constant c > 0 such that

inf
û∈Md

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û(S)⊤Σû(S)

∥Σ∥

]
≥ c ·min

{√
d

n
, 1

}
.

Hypercontractive distributions In this section, we apply our results on hypercontractive distributions in Definition B.14.
Using the resilience of hypercontractive distributions with respect to (µ = 0,Σ) in Lemma B.15, which is the same as the
resilience properties we need for PCA in Definition E.1, Theorem 14 implies the following corollary.

Corollary E.10. Under the hypothesis of Lemma B.15 with k ≥ 3, µ = 0 and any PSD matrix Σ ∈ Rd×d, there exist universal
constants c and C > 0 such that for any α ∈ (0, c), a dataset of size

n = O

(
d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ2
+
κ2d log d

α2/k
+

log(1/(δζ)) + d log(1/α1−2/k)

εα

)
,

and sensitivity of ∆ = O(α1−2/k/n) with large enough constants are sufficient for HPTR(S) in Appendix E.1 for PCA with the
choices of the distance function in Eq. (67) to achieve

1− û⊤Σû

∥Σ∥
≤ Cα1−2/k , (79)

with probability 1 − ζ. Further, the same guarantee holds even if α-fraction of the samples are arbitrarily corrupted as in
Assumption 1.



The error bound is optimal under α-corruption up to a constant factor. HPTR is the first estimator that guarantees (ε, δ)-DP
and also achieves the robust error rate of 1 − û⊤Σû/∥Σ∥ = O(α1−2/k), matching the information theoretic lower bound
of 1 − û⊤Σû/∥Σ∥ = Ω(α1−2/k). This lower bound can be easily constructed using the construction in Eq. (59), where two
hypercontractive distributions are at total variation distance O(α) and the top principal component of one distribution achieves an
error lower bounded by 1− û⊤Σû/∥Σ∥ = Ω(α1−2/k). Even if privacy is not required, there is no outlier-robust PCA estimator
matching this optimal error rate for general k.

The sample complexity is n = Õ(d/α2(1−1/k) + (d+ log(1/δ))/(εα)) for constant ζ, k, and κ, where Õ hides logarithmic
factors in 1/α and d. Even for DP PCA without corrupted samples, HPTR is the first estimator for hypercontractive distributions to
guarantee differential privacy. The information-theoretic lower bound is n = Ω(d/α2(1−2/k)+min{d, log((1− e−ε)/δ)}/(αε))
to achieve the error in Eq. (79). The first term is unavoidable even without DP and robustness, when the data comes from
a Gaussian distribution, because estimating the principal component up to error α1−2/k requires Ω(d/α2(1−2/k)) samples
(Proposition E.7). There is a gap of factor O(α−2/k) compared to the first term in our upper bound. Since the sample complexity
lower bound in Proposition E.7 is constructed using Gaussian distributions, it might be possible to tighten it further using
hypercontractive distributions. The second term in the lower bound follows from Proposition E.11, which matches the last term
in the upper bound up to a factor of O(log(1/α)) when δ = e−Θ(d) and ε > 0. To the best of our knowledge, HPTR is the first
algorithm for PCA that guarantees (ε, δ)-DP under hypercontractive distributions.
Proposition E.11 (Lower bound for hypercontractive private PCA). Let PΣ be the set of zero-mean hypercontractive distributions
with covariance Σ ∈ Rd×d. Let Mε,δ be a class of (ε, δ)-DP estimators using n i.i.d. samples from P ∈ PΣ. Then, for ε ∈ (0, 10),
there exists a constant c such that

inf
û∈Mε,δ

sup
Σ≻0,P∈PΣ

ES∼Pn

[
1− û⊤Σû

∥Σ∥

]
≥ cmin

{(
d ∧ log((1− e−ε)/δ)

nε

)1−2/k

, 1

}
. (80)

Proof. We use the same construction as the distribution of x in the proof of Proposition C.21. By (Acharya, Sun, and Zhang
2021, Lemma 6), there exists a finite index set V ⊂ Rd with cardinality |V| = 2Ω(d), ∥v∥ = 1 for all v ∈ V and ∥v − v′∥ ≥ 1/2
for all v ̸= v′ ∈ V . For each v ∈ V and α ∈ (0, 1/2), we construct the density function of distribution Pv as defined in
Eq. (59). Let Σv denote the covariance matrix of Pv . The proof of Proposition C.21 shows that Σv = (1−α)Id×d+α

1−2/kvv⊤,
dTV(Pv, P

′
v) = α and that Pv is (O(1), k)-hypercontractive.

Since ∥v − v′∥ ≥ 1/2, we know ⟨v, v′⟩ ≤ 7/8 and we have

DΣv′ (v) = 1− v⊤Σ′
vv

∥Σv′∥
= 1− 1− α+ α1−2/k ⟨v, v′⟩2

1− α+ α1−2/k
≥ α1−2/k

8(1− α+ α1−2/k)
>
α1−2/k

12
,

for α < c small enough.
Next, we apply the reduction of estimation to testing with this packing V . For (ε, δ)-DP estimator û, using Lemma B.19, let

t = α1−2/k

12 , we have

sup
P∈PΣ

ES∼Pn [DΣ(û)] ≥ 1

|V|
∑
v∈V

ES∼Pn
v
[DΣv

(û)]

=
1

|V|
∑
v∈V

Pv (DΣv (û) ≥ t)

≳ t
ed/2 ·

(
1
2e

−ε⌈nα⌉ − δ
1−e−ε

)
1 + ed/2e−ε⌈nα⌉ ,

where the last inequality follows from the fact that d ≥ 2.
The rest of the proof follows from (Barber and Duchi 2014, Proposition 4). We choose

α =
1

nε
min

{
d

2
− ε, log

(
1− e−ε

4δeε

)}
so that

sup
P∈P

ES∼Pn [DΣv
(û)] ≳ α1−2/k .

This means, for t = (1/12)α1−2/k and ε ∈ (0, 10),

inf
û∈Mε,δ

sup
P∈P

ES∼Pn [DΣ(û)] ≳ min

{(
d ∧ log((1− e−ε)/δ)

nε

)1−2/k

, 1

}
,

which completes the proof.



F General case: utility analysis of HPTR
We prove the following theorem that provides a utility guarantee for HPTR output θ̂ measured in Dϕ(θ̂, θ).

Theorem 15. For a given dataset S, a target error function Dϕ : Rp × Rp → R+, probability ζ ∈ (0, 1), and privacy (ε, δ),
HPTR achieves Dϕ(θ̂, θ) = c0ρ for some ρ > 0 and any constant c0 > 3c1 with probability 1 − ζ if there exist constants
c1, c2 > 0 and (∆ ∈ R+, ρ ∈ R+) such that with the choice of k∗ = (2/ε) log(4/(δζ)), τ = (c0 + c1)ρ, the following
assumptions are satisfied:

(a) (Bounded volume) (7/8)τ − (k∗ + 1)∆ > 0,

Vol(Bτ+(k∗+1)∆+c1ρ,S)

Vol(B(7/8)τ−(k∗+1)∆−c1ρ,S)
≤ ec2p , and

Vol({θ̂ : Dϕ(θ̂, θ) ≤ (c0 + 2c1)ρ})
Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ})

≤ ec2p ,

(b) (Local sensitivity) For all S′ within Hamming distance k∗ from S, maxS′′∼S′ ∥DS′′(µ̂) − DS′(µ̂)∥ ≤ ∆ for all µ̂ ∈
Bτ+(k∗+3)∆,S ,

(c) (Bounded sensitivity) ∆ ≤ (c0−3c1)ρε
32(c2p+(ε/2)+log(16/δζ)) , and

(d) (Robustness) |Dϕ(θ̂, θ)−DS(θ̂)| ≤ c1ρ for all θ̂ ∈ Bτ,S .

The parameter ρ ∈ R+ represents the target error up to a constant factor and depends on the resilience of the underlying
distribution Pθ,ϕ that the samples are drawn from. We explicitly prescribe how to choose the parameter ρ for each problem
instance in Appendices B, C, D, and E. Following the standard analysis techniques for exponential mechanisms, we show
that the output concentrates around an inner set {θ̂ : Dϕ(θ̂, θ) ≤ c0ρ}, by comparing its probability mass with an outer set
{θ̂ : Dϕ(θ̂, θ) ≥ c1ρ}. This uses the ratio of the volumes in the assumption (a) and the closeness of the error metric and D(θ̂) in
the assumption (d). When there is a strict gap between the two, which happens if ερ/∆ ≫ p+ log(1/ζ) as in the assumption (c),
this implies Dϕ(θ̂, θ) ≤ c0ρ with probability 1− ζ. We provide a proof in Appendix F.2.

A major challenge in analyzing HPTR is in showing that the safety test threshold k∗ = (2/ε) log(4/(δζ)) is not only large
enough to ensure that datasets with safety violation is screened with probability 1− δ/2 but also small enough such that good
datasets satisfying the assumptions (a), (b), and (c) pass the test with probability 1− ζ/2. We establish this first in Appendix F.1.

F.1 Large safety margin
In this section, we show in Lemma F.3 that under the assumptions of Theorem 15, we get a large enough margin for safety such
that we pass the safety test with high probability. We follow the proof strategy introduced in (Brown et al. 2021) adapted to our
more general framework. A major challenge is the lack of a uniform bound on the sensitivity, which the analysis of (Brown et al.
2021) relies on. We generalize the analysis by showing that while the data does not satisfy uniform sensitivity bound, we can still
exploit its local sensitivity bound in the assumption (b).

The following main technical lemma is a counter part of (Brown et al. 2021, Lemma 3.7), where we have an extra challenge
that the sensitivity bound is only local; there exists θ̂ far from θ where the sensitivity bound fails. We rely on the assumption (b)
to resolve it. Let wS(B) ≜

∫
B
exp{−(ε/4∆)DS(µ̂)}dµ̂ be the weight of a subset B ⊂ Rp. The following lemma will be used

to show that the denominator of the exponential distribution in RELEASE step does not change too fast between two neighboring
datasets.

Lemma F.1. Under the assumption (b) and δ ∈ (0, 1/2), for a dataset S′ at Hamming distance at most k∗ from S, if
wS′(Bτ−∆,S′) ≥ (1− δ)wS′(Bτ+∆,S′) then S′ ∈ SAFEε,4e2εδ,τ .

Proof. We follow the proof strategy of (Brown et al. 2021, Lemma 3.7) but there are key differences due to the fact that we
do not have a universal sensitivity bound, but only local bound. In particular, we first establish that under the local sensitivity
assumption, Bτ,S′′ ⊆ Bτ+∆,S′ for all S′′ ∼ S′, which will be used heavily throughout the proof. Since DS′′(θ̂) ≤ DS′(θ̂) + ∆

for all θ̂ ∈ Bτ+(k∗+3)∆,S , we have Bτ,S′′ ∩ Bτ+(k∗+3)∆,S ⊆ Bτ+∆,S′ . We are left to show that Bτ,S′′ \ Bτ+(k∗+3)∆,S = ∅,
which follows from the fact that (Bτ,S′′ \ Bτ+(k∗+1.5)∆,S) ∩ Bτ+(k∗+3)∆,S) = ∅ and DS′′(θ̂) is a Lipschitz continuous
function. Similarly, it follows that Bτ−∆,S′ ⊆ Bτ,S′′ . In particular, this implies that Bτ,S′ ⊆ Bτ+(k∗+3)∆,S for any S′ with
dH(S′, S) ≤ k∗.

We first show that for any E ⊂ Bτ,S′ one side of the (ε/2, 4eε/2δ)-DP condition is met: Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) ≤

eε/2Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E) + 4eε/2δ for all S′′ ∼ S′ where r(ε,∆,τ,S′) and r(ε,∆,τ,S′′) are the distributions used in the ex-



ponential mechanism as defined in (3) respectively. For B = Bτ,S′ ∩Bτ,S′′ , we have

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) = Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E ∩B) + Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E \B)

=
Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B) + Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E \B)

≤
Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E) + Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ̸∈ Bτ,S′′) .

The ratio is bounded due to the local sensitivity bound at S′ as

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ∈ E ∩B)

≤ eε/4
wS′′(Bτ,S′′)

wS′(Bτ,S′)

≤ eε/2
wS′(Bτ,S′′)

wS′(Bτ,S′)

≤ eε/2
wS′(Bτ+∆,S)

wS′(Bτ,S′)
≤ eε/2(1 + 2δ) ,

where the second inequality follows from the fact that wS′′(A) ≤ eε/6wS′(A) for any set A ⊂ Bτ,S′ ∪Bτ,S′′ ⊆ Bτ+(k∗+3)∆,S

and the third inequality follows from the fact that Bτ,S′′ ⊆ Bτ+∆,S′ . From the assumption on the weights, it follows that
wS′(Bτ+∆,S′)/wS′(Bτ,S′) ≤ wS′(Bτ+∆,S′)/wS′(Bτ−∆,S′) ≤ 1/(1− δ) ≤ 1 + 2δ for δ < 1/2. Similarly,

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ̸∈ Bτ,S′′) ≤ Pθ̂∼r(ε,∆,τ,S′)

(θ̂ ̸∈ Bτ−∆,S′)

≤ 1− wS′(Bτ−∆,S′)

wS′(Bτ,S′)
≤ 1− wS′(Bτ−∆,S′)

wS′(Bτ+∆,S′)
≤ δ .

Putting these together, we get Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) ≤ eε/2Pθ̂∼r(ε,∆,τ,S′′)

(θ̂ ∈ E) + 4eε/2δ.

Next, we show the other side of the (ε/2, 4eε/2δ)-DP condition: Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E) ≤ eε/2Pθ̂∼r(ε,∆,τ,S)

(θ̂ ∈ E) + 4e2εδ

for all S′ ∼ S. We need to show an upper bound on the ratio:

Pθ̂∼r(ε,∆,τ,S′)
(θ̂ ∈ E ∩B)

Pθ̂∼r(ε,∆,τ,S)
(θ̂ ∈ E ∩B)

≤ eε/4
wS(Bτ,S)

wS′(Bτ,S′)

≤ eε/2
wS(Bτ,S)

wS(Bτ,S′)

≤ eε/2
wS(Bτ,S)

wS(Bτ−∆,S)
≤ (1 + 2δ)eε/2 ,

For the probability outside Bτ,S′ ,

Pθ̂∼r(ε,∆,τ,S′′)
(θ̂ ̸∈ Bτ,S′) ≤ Pθ̂∼r(ε,∆,τ,S′′)

(θ̂ ∈ Bτ+∆,S′ \Bτ,S′)

≤ wS′′(Bτ+∆,S′ \Bτ,S′)

wS′′(Bτ,S′′)

≤ eε/2
wS′(Bτ+∆,S′ \Bτ,S′)

wS′(Bτ,S′′)

≤ eε/2
wS′(Bτ+∆,S′)− wS′(Bτ,S′)

wS′(Bτ−∆,S′)

≤ eε/2(1 + 2δ − 1) = 2eε/2δ .

where the first inequality follows from Bτ,S′′ ⊆ Bτ+∆,S′ , the second inequality follows from (Bτ+∆,S′ \ Bτ,S′) ∩ Bτ,S′′ ⊆
Bτ+∆,S′ \Bτ,S′ , the third inequality follows from the fact that Bτ,S′′ ⊆ Bτ+∆,S′ and the local sensitivity assumption, and the
last inequality follows from the weight assumption and Bτ−∆,S′ ⊆ Bτ,S′ .



The next lemma identifies the range of the threshold k∗ = O(τ/∆) that ensures safety.
Lemma F.2. Under the assumption (b), if there exists a g > 0 such that τ −∆(k∗ + g + 1) > 0 and

Vol(Bτ+∆(k∗+1),S)

Vol(Bτ−∆(k∗+g+1),S)
e

−εg
4 ≤ 1

8
e−ε/2δ , (81)

then S′ ∈ SAFE(ε/2,δ/2,τ) for all S′ within Hamming distance k∗ from S.

Proof. Consider S′ at Hamming distance k away from S. From Lemma F.1 it suffices to show that
wS′(Bτ−∆,S′)/wS′(Bτ+∆,S′) ≥ 1− δ′ for δ′ = (1/8)e−ε/2δ, which is equivalent to

wS′(Bτ+∆,S′ \Bτ−∆,S′)/wS′(Bτ+∆,S′) ≤ δ′ .

The denominator is lower bounded by

wS′(Bτ+∆,S′) ≥ wS′(Bτ−∆(1+g),S′) ≥ Vol(Bτ−∆(1+g),S′)e−ε(τ−∆(1+g))/(4∆)

≥ Vol(Bτ−∆(1+g+k),S)e
−ε(τ−∆(1+g))/(4∆) ,

where the last inequality uses the local sensitivity (the assumption (b)). The numerator is upper bounded by

wS′(Bτ+∆,S′ \Bτ−∆,S′) ≤ wS′(Bτ+(k+1)∆,S \Bτ−∆,S′) ≤ Vol(Bτ+(k+1)∆,S)e
−ε(τ−∆)/(4∆) ,

where the first inequality uses the local sensitivity. Together, it follows that

wS′(Bτ+∆,S′ \Bτ−∆,S′)

wS′(Bτ+∆,S′)
≤

Vol(Bτ+(k+1)∆,S)e
−ε(τ−∆)/(4∆)

Vol(Bτ−∆(1+g+k),S)e−ε(τ−∆(1+g))/(4∆)
≤ δ′ =

1

8
eε/2δ ,

as e−ε(τ−∆)/(4∆)/e−ε(τ−∆(1+g))/(4∆) = e−εg/4, which implies safety.

We next show that k∗ = O((1/ε) log(1/(δζ))) is sufficient to ensure a large enough safety margin of mτ − k∗ =
Ω((1/ε) log(1/ζ)).
Lemma F.3. Under the assumptions (a), (b), and (c) of Theorem 15, for k∗ = (2/ε) log(4/(δζ)), if dH(S′, S) ≤
(2/ε) log(4/(ζδ)) then S′ ∈ SAFE(ε/2,δ/2,τ).

Proof. Applying Lemma F.2 with k∗ = (2/ε) log(4/(δζ)) and g = (1/(8∆))τ , we require

Vol(Bτ+∆(k∗+1),S)

Vol(B(7/8)τ−∆(k∗+1),S)
e

−ετ
32∆ ≤ 1

8
e−ε/2δ .

From the assumption (a), it is sufficient to have

exp
{
c2p−

τε

32∆

}
≤ 1

8
e−ε/2δ .

For ∆ ≤ (τε)/(32(c2p+ (ε/2) + log(8/δ))), which follows from the assumption (c), this is satisfied.

F.2 Proof of Theorem 15
We first show that we pass the safety test with high probability. Define the error event E as the event that we output ⊥ in the
TEST step. From Lemma F.3, we have mτ > (2/ε) log(4/(δζ)) under the assumptions (a), (b), and (c). This implies that

P(E) = P
(
mτ + Lap(2/ε) < (2/ε) log(2/δ)

)
≤ ζ

2
.

We next show that resilience implies good utility (once safety test has passed). We want the exponential mechanism to output
an accurate θ̂ near θ with high probability, i.e., Pθ̂∼r(ε,∆,τ,S)

(Dϕ(θ̂, θ) ≥ c0ρ) ≤ ζ/2. We omit the subscript in the probability
for brevity, and it is assumed that randomness is in the sampling of the exponential mechanism. We want to bound by ζ/2 the
failure probability:

P
(
Dϕ(θ̂, θ) ≥ c0ρ

)
≤

P
(
Dϕ(θ̂, θ) ≥ c0ρ

)
P
(
Dϕ(θ̂, θ) ≤ c1ρ1

)
≤ Vol(Bτ,S)

Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ})

maxθ̂:Dϕ(θ̂,θ)≥c0ρ
P(θ̂)

minθ̂:Dϕ(θ̂,θ)≤c1ρ1
P(θ̂)

,



as long as {θ̂ : Dϕ(θ̂, θ) ≤ c0ρ} ⊆ Bτ,S (otherwise we are under-estimating the volume), which follows from the assumption
(d); DS(θ̂) ≤ (Dϕ(θ̂, θ) + c1ρ) ≤ (c0 + c1)ρ = τ .

Similarly, since θ̂ ∈ Bτ,S implies Dϕ(θ̂, θ) ≤ τ + c1ρ = (c0 + 2c1)ρ, the volume ratio is bounded by

Vol(Bτ,S)

Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ)
≤ Vol({θ̂ : Dϕ(θ̂, θ) ≤ (c0 + 2c1)ρ})

Vol({θ̂ : Dϕ(θ̂, θ) ≤ c1ρ})
≤ ec2p ,

under the assumption (a). The probability ratio can be bounded similarly. From the assumption (d), we have

maxθ̂:Dϕ(θ̂,θ)≥c0ρ
P(θ̂)

minθ̂:Dϕ(θ̂,θ)≤c1ρ
P(θ̂)

≤ exp
{
− ε

4∆

(
(c0 − c1)− (2c1)

)
ρ
}

≤ exp
{
− ε(c0 − 3c1)ρ

4∆

}
.

When ec2p−(ε(c0−3c1)ρ/(4∆))) ≤ ζ/2, we have the desired bound. This is guaranteed with our assumption (c).

G Auxiliary lemmas
Lemma G.1. For any symmetric Σ ≻ 0 and vector u ∈ Rd,

max
v:∥v∥=1

⟨v, u⟩
v⊤Σv

=
∥∥∥Σ−1/2u

∥∥∥ . (82)

Proof. This follows analogously from the proof of Lemma B.1.

Lemma G.2. Let Σ, A ∈ Rd×d be a symmetric matrix. If −cId×d ⪯ Σ−1/2AΣ−1/2 − Id×d ⪯ cId×d for some c > 0, then we
have for any u ∈ Rd,

∥Σ−1/2(A− Σ)u∥ ≤ c∥Σ1/2u∥ . (83)

Proof. Using the fact that −Id×d ⪯M ⪯ Id×d implies −Id×d ⪯M2 ⪯ Id×d, for any symmetric matrix M , we know

−c2Id×d ⪯ Σ−1/2(A− Σ)Σ−1(A− Σ)Σ−1/2 ⪯ c2Id×d , (84)

which implies that

−c2Σ ⪯ (A− Σ)Σ−1(A− Σ) ⪯ c2Σ . (85)

Thus, we know

∥Σ−1/2(A− Σ)u∥2 = u⊤(A− Σ)Σ−1(A− Σ)u ≤ c2u⊤Σu = c2∥Σ1/2u∥2 . (86)

H Existing lower bounds
Theorem H.1 (Lower bound for DP Gaussian mean estimation with known covariance (Kamath et al. 2019, Lemma 6.7)). Let

µ̂ : Rn×d → [−Rσ,Rσ]d be an (ε, δ)-differentially private estimator (with δ ≤
√
d/(48

√
2Rn

√
log(48

√
2Rn/

√
d))) such

that for every Gaussian distribution P = N (µ, σ2Id×d) (for −Rσ ≤ µj ≤ Rσ where j ∈ [d]) and

ES∼Pn

[
∥µ̂(S)− µ∥2

]
≤ α2 ≤ dσ2R2

6
, (87)

then n ≥ dσ
24αε .

Theorem H.2 (Lower bound for DP covariance bounded mean estimation (Kamath, Singhal, and Ullman 2020, Theo-
rem 6.1)). Suppose µ̂ is an (ε, 0)-DP estimator such that, for every product distribution P ∈ Rd such that E[P ] = µ,
supv:∥v∥=1 Ex∼P [⟨v, x− µ⟩2] ≤ 1 and

ES∼Pn

[
∥µ̂(S)− µ∥2

]
≤ α2 . (88)

Then n = Ω
(
d/(εα2)

)
Theorem H.3 (Lower bound on the error rate for hypercontractive linear regression with independent noise(Bakshi and Prasad
2021, Theorem 6.1)). Consider linear model y = ⟨β, x⟩+ η, where optimal hyperplane β is used to generate data, and the noise
η is independent of the samples x. Then there exists two distribution D1 and D2 over R2 ×R such that the marginal distribution
over R2 has covariance Σ and is (κk, k)-hypercontractive yet ∥Σ1/2(β1 − β2)∥ = Ω(

√
κkγα

1−1/k), where β1 and β2 are the
optimal hyperplanes for D1 and D2 respectively, γ < 1/α1/k and the noise η is uniform over [−γ, γ].



Theorem H.4 (Lower bound on the error rate for hypercontractive linear regression with dependent noise(Bakshi and Prasad 2021,
Theorem 6.2)). There exists two distributions D1, D2 over R2 × R such that the marginal distribution over R2 has covariance
Σ and is κk, k-hypercontractive yet ∥Σ1/2(β1 − β2)∥ = Ω(

√
κkγα

1−2/k), where β1 and β2 are least square solutions for D1

and D2, respectively, γ < 1/α1/k and the noise is a function of the marginal distribution of R2,

Theorem H.5 (Lower bound for DP sub-Gaussian linear regression (Cai, Wang, and Zhang 2019, Theorem 4.1)). Given i.i.d.
samples S = {(xi, yi)}ni=1 drawn from model yi = ⟨β, xi⟩ + ηi, where ηi ∼ N (0, γ2), β ∈ Θ = {β ∈ Rd : ∥β∥ ≤ 1},
P(∥x∥ ≤ 1) = 1, Σ = E[xx⊤] is diagonal and satisfies 0 < 1/L < dλmin(Σ) ≤ dλmax(Σ) < L for some constant
L = O(1). Denote this class of distribution as Pγ,Θ,Σ. Denote Mε,δ as a class of (ε, δ)-DP algorithms. Then suppose ε ∈ (0, 1),
δ ∈ (0, n−(1+w)) for some fixed w > 0, then there exists a constant such that

inf
β̂∈Mε,δ

sup
Σ≻0,P∈Pγ,Θ,Σ

EPn

[
∥Σ1/2(β̂(S)− β)∥2

]
≥ cγ2

(
d

n
+

d2

n2ε2

)
. (89)

Theorem H.6 (Lower bound of linear regression (Shamir 2015, Theorem 1)). A multiset of i.i.d. samples S = {(xi, yi)}ni=1 is
drawn from distribution P ∈ Rd × R in a class PB,Y , where |y| ≤ Y , ∥x∥ ≤ 1 and β ∈ ΘB = {β ∈ Rd : ∥β∥ ≤ B}. Then
there exists a constant c such that

inf
β̂∈ΘB

sup
P∈PB,Y

EPn

[(
y −

〈
β̂(S), x

〉)2
− min

β∈ΘB

(y − ⟨β, x⟩)2
]
≥ cmin

{
Y 2, B2,

dY 2

n
,
BY√
n

}
. (90)

Theorem H.7 (Lower bound of Gaussian DP covariance estimation (Kamath et al. 2019, Lemma 6.11)). Let Σ̂ : Rn×d → Θ
be an (ε, 0)-DP estimator (where Θ is the space of all d × d PSD matriaces), and for every N (0,Σ) over Rd such that
1/2Id×d ⪯ Σ ⪯ 3/2Id×d,

ES∼N (0,Σ)n

[
∥Σ̂(S)− Σ∥2F

]
≤ α2

64
, (91)

then n ≥ Ω(d2/(εα)).
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