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Abstract

The utilisation of large and diverse datasets for machine
learning (ML) at scale is required to promote scientific insight
into many meaningful problems. However, due to data gover-
nance regulations such as GDPR as well as ethical concerns,
the aggregation of personal and sensitive data is problem-
atic, which prompted the development of alternative strate-
gies such as distributed ML (DML). Techniques such as Fed-
erated Learning (FL) allow the data owner to maintain data
governance and perform model training locally without hav-
ing to share their data. FL and related techniques are often
described as privacy-preserving. We explain why this term
is not appropriate and outline the risks associated with over-
reliance on protocols that were not designed with formal def-
initions of privacy in mind. We further provide recommen-
dations and examples on how such algorithms can be aug-
mented to provide guarantees of governance, security, privacy
and verifiability for a general ML audience without prior ex-
posure to formal privacy techniques.

Introduction
Machine learning (ML) has shown promise in solving a
number of important problems such as disease survival pre-
diction (Vanneschi et al. 2011; Yan et al. 2020) or early-
stage cancer discovery (Kourou et al. 2015). However, in
order to train ML models capable of solving these tasks ef-
fectively, as well as fulfilling requirements such as fairness
and generalisation, large, high-quality and unbiased datasets
are required. Procuring these datasets has been problematic
in contexts that rely on scarce, sensitive data especially in
the context of healthcare. So far, this issue has been alle-
viated through data centralisation, where these datasets are
aggregated at a single location, and model training is per-
formed. However, the introduction of stricter data protection
and governance regulations (e.g. the general data protec-
tion regulation (Radley-Gardner, Beale, and Zimmermann
2016)), and an increased societal awareness of privacy is-
sues resulting in public resistance against aggressive data
collection, centralisation of data is increasingly becoming
an unsustainable solution.

As a result, the ML community has witnessed a surge in
interest for scalable, privacy-preserving technologies allow-
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ing large-scale training of ML models on distributed data
across geographically distant institutions. The common fac-
tor of this family of protocols is their reliance on sharing the
algorithms or the model updates instead of the datasets, thus
remaining in line with existing data governance and data
protection regulations. This allows the researchers to con-
duct collaborative machine learning at scale while minimis-
ing the data transmitted. One such mechanism, namely fed-
erated learning (FL) (Konečný et al. 2016), has received par-
ticular appraisal from the research community and has seen
widespread adoption in a large number of studies (Bonawitz
et al. 2019; Nasirigerdeh et al. 2020; Brisimi et al. 2018;
Roy et al. 2019; Nasirigerdeh et al. 2021; Zhao et al. 2018;
Brisimi et al. 2018). However, while FL –by design– only
avoids transmitting data and thus preserves data governance,
it is often wrongly referred to as privacy-preserving. In fact,
collaboratively trained models can unintentionally leak in-
formation about the sensitive properties of the training pop-
ulation. Attacks on the models trained and transmitted be-
tween institutions have, on numerous occasions, been shown
to be able to reveal sensitive information (Usynin et al. 2021;
He, Zhang, and Lee 2019; Geiping et al. 2020; Shokri et al.
2017; Zhang et al. 2020; Ziller et al. 2021). Thus, FL and
other governance mechanisms alone are insufficient means
of privacy protection and require augmentations in the forms
of formal privacy enhancing technologies (PETs).

Beyond privacy, a number of additional considerations
arise when data is processed, independent of whether such
processing occurs centrally or –as in FL– in a decentralised
manner. The requirements towards such systems are outlined
in a theoretical framework named structured transparency
(ST) (Trask et al. 2020; Kaissis et al. 2020), whose termi-
nology we will employ in the current work. These include:

1. The ability to train a model collaboratively without re-
vealing the input data to other contributors (input pri-
vacy);

2. The protection of private information which can be
learned from the results (i.e. the output) of the compu-
tation (output privacy);

3. The ability to verify the origin of the computation’s result
i.e. that the model update is not submitted by an unautho-
rised party (input verification);

4. The capability to guarantee the correctness of the output



and that the processing of inputs is honest (output veri-
fication)

5. The ability to control data ownership and exercise gover-
nance over it (flow governance).

Adhering to these principles (along with others, such as
explainability, that lie outside of scope of this work) is fun-
damental to frameworks that claim to be trustworthy, giv-
ing sound guarantees of privacy to the individuals whose
sensitive data is utilised, but also of reliability of the train-
ing protocol in general. Beyond FL, (and in part due to
its vulnerabilities), a number of other DML frameworks
have been introduced, for instance Swarm Learning (SL)
(Warnat-Herresthal et al. 2021), Split Learning (Vepakomma
et al. 2018) or gossip learning (Hegedűs, Danner, and Jela-
sity 2019)). These attempt to address some of the aforemen-
tioned requirements, but often fail to offer full ST guarantees
either. In this article, motivated by the increasing popularity
of DML, we aim to equip ML practitioners interested in ap-
plying DML techniques or reading related literature with an
overview of relevant techniques, so that they can avoid mis-
understandings and common pitfalls.

Our contributions can be summarised as follows:

• We provide definitions for the commonly used (and mis-
understood) terms governance, privacy, secrecy, security,
accountability and verification.

• We contextualise these techniques within the structured
transparency framework.

• Finally, we discuss mechanisms by which the
governance-preserving attributes of DML frame-
works can be supplemented to render them fully
privacy-preserving, verifiable, and secure.

Governance
In its core, data governance is a framework that defines the
way data should be handled from the perspectives of ac-
cess, ownership and auditability (Eryurek et al. 2021). For
the purposes of distributed algorithmic processing, we con-
sider auditability (that is, the ability of being inspected for
e.g. quality) as a process that is either performed locally by
the data owner on their own data or, alternatively, by the cen-
tral aggregator on the updates submitted by the members of
the consortium. We discuss auditability in the Accountability
Section.

Central to exercising data governance is the ability to con-
trol data locality and data accessibility. In frameworks such
as FL, control over data locality is maintained through local
model training and subsequent update sharing, meaning that
the data does not leave its owner owner and only the results
of the algorithmic processing of this data are shared with the
rest of the federation.

Nevertheless, DML allows (indirectly) accessing the data
(or, more precisely, computational results derived from it),
to the members of the federation. To prevent unwarranted or
unauthorised access, security measures must be put in place,
which are discussed below. In this regard, governance over
data is maintained in DML paradigms such as FL, provided
a suitable framework for auditing the input data is in place.

However, even though appropriately audited data remains
local and is only accessible through the collaborative learn-
ing protocol, the protection of privacy and secrecy are con-
tingent on additional techniques being utilised.

Privacy and secrecy
In this section we consider the fundamental differences be-
tween the concepts of secrecy and privacy, which are often
conflated.

Privacy is the ability to control how much can be learned
from the data about an individual. In the context of ST, there
exist two separate privacy-related concepts: input and output
privacy. Input privacy controls the extent to which the input
data is visible and accessible to other actors, whereas out-
put privacy is concerned with how much can be learnt from
the data itself. The former can be achieved through strate-
gies that maintain the secrecy of the computation, whereby
secrecy implies that the sensitive data itself cannot be seen
by anyone other than the data owner, concealing it from
other parties. While decentralised protocols such as FL or
SL allow data owners to enforce governance over their data
and prevent unwarranted access to the training data directly,
they do not provide the contributors with any mechanisms
to control what can be inferred about that data when it is
used for model training (output privacy). Input and output
privacy pursue two complementary goals: secrecy prevents
data from being usable when accessed inappropriately while
privacy reduces the amount of information that can be ex-
tracted from the data about the individual while not wholly
preventing drawing insights from the data otherwise.

The secrecy of datasets or of the computational process
itself is often maintained through the application of formal
cryptographic protocols. For example, individual contribu-
tions can be encrypted to conceal them from other partici-
pants during training. One such solution, namely homomor-
phic encryption (HE) (Gilad-Bachrach et al. 2016; Hesami-
fard, Takabi, and Ghasemi 2017) allows the federation to run
the entire training procedure on encrypted data and only de-
crypting the end result of the computation. Another solution,
namely secure multi-party computation (SMPC) (Rouhani,
Riazi, and Koushanfar 2018; Mohassel and Zhang 2017) of-
fers the federation an option of masking their contributions
through splitting them into a number of encrypted shares,
which, unless aggregated with the agreement of a quorum
of participants (sometimes all participants), do not allow an-
other client to learn anything about the model update. This
fact also renders SMPC an attractive option for distributed
data governance, where only a given number of parties are
able to reveal the data that is shared between them. Most
DML algorithms can be augmented with either of these
mechanisms to provide the data owners with guarantees of
secrecy, and, as a consequence, of input privacy. However, it
is important to outline that typically such mechanisms usu-
ally come with a performance overhead that can affect the
training time and/or the utility of the final model (Kaissis
et al. 2021; Mohassel and Zhang 2017).

In contrast, enforcing output privacy requires limiting the
information that can be derived about an individual from the
data used for model training. While DML can guarantee data



governance, it does not in itself offer any meaningful privacy
guarantees to the data owners. Therefore, the over-reliance
on DML protocols alone, and their further adoption without
the inclusion of formal privacy-preserving mechanisms must
be viewed critically. Differential privacy (DP) (Dwork et al.
2006), which allows to objectively quantify and bound the
amount of information that can be inferred from the train-
ing data, has established itself as the gold standard of formal
privacy protection. DP allows data owners to perform model
training while offering the individuals whose data is used to
train the model, a quantifiable privacy guarantee in the form
of a privacy budget. This privacy budget can be thought of as
fungible, because it can be expended through model training.
After an individual’s privacy budget is exhausted, no further
interaction with their data is permitted. The combination of
DML with DP and cryptographic tools can equip the feder-
ation with the means of ascertaining governance as well as
input and output privacy.

Security
In addition to the concepts of privacy and secrecy outlined
above, we additionally need to consider security. In general,
security is a property of a protocol or system where the pro-
tocol or system as-a-whole cannot be threatened by an ad-
versarial actor. Security is thus not just complementary to
privacy and secrecy, but a prerequisite for the design of any
private and secure system. For instance, the physical secu-
rity of the buildings in which computational equipment is
housed is paramount to ensuring that these systems cannot
be tampered with or destroyed. Moreover, a series of soft-
ware and hardware measures are employed to safeguard the
security of the learning protocol. For example, technologies
such as transport layer security (TLS) are deployed to en-
crypt the data in transit and protect it against adversaries
who could intercept data packets and obtain potentially sen-
sitive information (so-called man-in-the-middle attacks). In
general, the security of the system concerns all factors that
can be exploited by adversaries that are covered in the ST
framework and beyond. Issues such as physical unwarranted
access to the data owner cannot be mitigated regardless of
the privacy measures deployed, as these are covered under
the notion of physical security. Similarly, issues such as at-
tacks that are not exploiting/targeting the DML models di-
rectly (e.g. malicious hackers that attempt to steal the dataset
through exploitation of the site itself rather than the trained
model) do not lie within the scope of the ST framework.

Verification
In order to verify that the model is trained well on the un-
derlying learning task, the federation needs to establish a
method to ascertain that the data of the federation was used
faithfully and the training protocol was not subverted by any
party. Currently, no published DML implementation support
this notion of output verification, as it comes in direct con-
flict with the notions of privacy described above, as such ver-
ification could entail inspection of the training protocol and
–as a result– of sensitive data supplied by individual par-
ticipants. One solution that can be employed for this task

can build upon techniques from the verifiable computing
(VC) domain to enable the actors of the federation to cer-
tify the results they compute. VC encompasses methods that
can be used to attest that a given computation’s result was
produced by a specific instance of an algorithm, matching
its dependencies to the very bit, as pre-agreed upon between
the prover, who runs the computation, and the verifier, who
seeks to obtain guarantees of integrity of the computation,
i.e. that the result of the computation was no malformed and
represents an honest processing of inputs by the algorithm.

There exist two main strategies of implementations of VC
in the context of ML: one involves special hardware em-
bodied as trusted execution environment (TEE) (Chen et al.
2020; Lee et al. 2020a) and relies on the hardware properties
in conjunction with a mechanism termed remote attestation
(RA) (Ali, Nauman, and Jan 2018) to fulfil the verifiable
trait of the execution. We note that TEEs (also termed se-
cure enclaves) can also be used for end-to-end encrypted
computations, thus fulfilling the role of an input privacy
mechanism. The second form of VC that has gained traction
over the past few years is entirely software-based and relies
on cryptographic proofs. A popular form of cryptographic
proof, namely zero knowledge succinct non-interactive ar-
guments of knowledge (zk-SNARKs) (Bitansky et al. 2014),
gained significant interest from the research community and
has been previously leveraged in the context of neural net-
work verification (Lee et al. 2020b; Weng et al. 2021). Aug-
mented with these mechanisms, DML is able to guarantee
that the computation was performed faithfully.

We note that –although verification of correctness is pos-
sible with these techniques– the verification of data qual-
ity is much more complex. For instance, a number of mea-
sures may be employed to gauge data quality, such as the re-
duction in model uncertainty obtained through each individ-
ual data sample. Moreover, members of the federation may
agree upon metrics other than data quality (e.g. the speed
with which a computational result is returned), to determine
participant reimbursement.

Accountability
In a setting where several parties collaborate to solve a learn-
ing task, one cannot easily anticipate the intentions of each
individual participant, as some actors might be actively at-
tempting to subvert the training protocol. As a result, attacks
on the utility of the resulting model are possible in decen-
tralised learning, such as model poisoning (Fang et al. 2020;
Yang et al. 2017) or backdoor attacks (Bagdasaryan et al.
2020; Bagdasaryan and Shmatikov 2020). Thus, paradigms
such as FL require substantial augmentations to mitigate po-
tential adversarial influence from being incorporated into the
jointly trained model. This influence can take multiple forms
ranging from colluding with other participants to submitting
malformed updates or not submitting model updates at all,
causing the training procedure to halt indefinitely. The abil-
ity to track the source of malicious interference is therefore
a required component of trustworthy DML protocols. More-
over, as described above, it may also be required to track
properties of the data pertaining to its quality, or about the



Term Definition
Governance Framework that defines the way data should be handled from the perspectives of access, ownership and auditability.

Privacy The ability to control how much can be learned from the data about an individual.

Secrecy Trait of the computation that implies that the sensitive data cannot be seen by anyone other than the data owner.

Security Property of a protocol or system where the protocol or system as a whole cannot be threatened by an adversarial actor.

Accountability The ability to track the source of the computation’s results.

Verifiability The capability to guarantee an honest processing of the input data and the integrity of the computation.

Table 1: Summary of the relevant definitions

computation, such as its speed or the result of a verification
workflow.

Thus, certain DML implementations (Warnat-Herresthal
et al. 2021), propose the utilisation of a permissioned
blockchain to track the contributions of each individual
data owner, discouraging them from submitting intentionally
malformed model updates. Concretely, model aggregation
and the selection of the aggregation server for the round (so-
called leader) occur through the execution of blockchain-
backed smart contracts.

In general, the reliance on blockchains in DML can thus
allow the federation to obtain a decentralised, immutable
transcript of individual contributions to the training proto-
col. This can include the information about how each in-
dividual’s contribution influences the resulting model, the
time it took them to produce each contribution etc. Such in-
formation is essential in the identification of malicious ac-
tors whose contributions (or deliberate lack thereof, which
can result in protocol halting), affect the utility of the jointly
trained model. The immutability of blockchains additionally
prevents such actors from concealing their contributions.
Moreover, DML protocols combining the notions of data
governance and accountability within the same distributed
learning system have been developed (Passerat-Palmbach
et al. 2020).

While accountability approaches undoubtedly increase
the overall trust level, their contribution must be weighed
against the cost of developing and deploying such complex
solutions. A potential solution for future generations of truly
trustless (i.e. those that can function when 50% of all parties
are assumed to be malicious) DML systems would be to ben-
efit from leveraging a public blockchain network such as the
Ethereum main network. On such truly decentralised pub-
lic infrastructure, no participant in the federation can tamper
with the data stored nor with the execution of the smart con-
tracts.

Conclusion
In this work, we study the vulnerabilities associated with the
naı̈ve utilisation of DML. We deduce that most DML proto-
cols cannot be relied upon unless accompanied by additional
mechanisms enhancing trust between participants. Unfortu-
nately, much published literature implies that FL and other
DML protocols provide privacy protections. It is paramount
to note that all that is offered by DML itself is –at best–
a semblance of privacy. As a result, promoting the utilisa-

tion of DML without any formal measures of input or out-
put privacy protection in place can lead to the disclosure of
sensitive information, potentially causing irreparable dam-
age. As evident from the comparison between the compo-
nents of the ST framework and the current abilities of pub-
lished DML systems, most frameworks can currently only
satisfy a subset of ST requirements. Moreover, we contend
that the terms privacy, secrecy and security should not be
used interchangeably, and that all are required for ensuring
the trustworthiness of DML systems. As noted by (Carlini
et al. 2021) “There is no room for error in privacy”, showing
that the misinterpretation or entanglement of concepts can
result in the violation of trust between parties of DML pro-
tocols. We summarise these (along with other) definitions in
Table 1.

Finally, we propose the following recommendations that
arise from our work:

1. Future research in the field of trustworthy AI (particu-
larly in the field of private ML) should agree upon and
adhere to terminological guidelines. For instance, nei-
ther systems without formal privacy guarantees (e.g. FL)
nor systems only offering input privacy (e.g. encryp-
tion) should be haphazardly termed privacy-preserving
(or similar).

2. Only systems adhering to all aforementioned principles
should be termed trustworthy, to avoid negative conse-
quences associated with over-reliance on protocols that
were not designed with fundamental privacy require-
ments in mind. Such systems should undergo external
auditing in order to verify their correctness e.g. through
the means of formal network certification (Lecuyer et al.
2019),

3. Most existing DML solutions already offer promising
foundations for emergence of private reliable ML sys-
tems, but they must be augmented with additional mech-
anisms in order to be able to guarantee both the privacy of
the participants and the robustness of the jointly trained
models. We emphasise the importance of education per-
taining to these systems, both for experts and laypeople,
in this regard.

References
Ali, T.; Nauman, M.; and Jan, S. 2018. Trust in IoT: dy-
namic remote attestation through efficient behavior capture.
Cluster Computing, 21(1): 409–421.



Bagdasaryan, E.; and Shmatikov, V. 2020. Blind backdoors
in deep learning models. arXiv preprint arXiv:2005.03823.
Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; and
Shmatikov, V. 2020. How to backdoor federated learning.
In International Conference on Artificial Intelligence and
Statistics, 2938–2948. PMLR.
Bitansky, N.; Canetti, R.; Chiesa, A.; Goldwasser, S.; Lin,
H.; Rubinstein, A.; and Tromer, E. 2014. The Hunting of
the SNARK. Cryptology ePrint Archive, Report 2014/580.
https://ia.cr/2014/580.
Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Inger-
man, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.;
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