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Abstract

End users and regulators require private and fair artificial in-
telligence models, but previous work suggests these objec-
tives may be at odds. We use the CivilComments to evalu-
ate the impact of applying the de facto standard approach to
privacy, DP-SGD, across several fairness metrics. We evalu-
ate three implementations of DP-SGD: for dimensionality re-
duction (PCA), linear classification (logistic regression), and
robust deep learning (Group-DRO). We establish a negative,
logarithmic correlation between privacy and fairness in the
case of linear classification and robust deep learning. DP-
SGD had no significant impact on fairness for PCA, but upon
inspection, also did not seem to lead to private representa-
tions.

Introduction
The vast majority of artificial intelligence research projects
focus on learning accurate models, but in practice, real-
life application of machine learning models require bal-
ancing performance with the need to prevent discrimina-
tion against protected demographic subgroups and satisfy-
ing privacy principles. Both needs are prerequisites for em-
ploying machine learning models at scale in many domains,
and the lack of fairness and privacy in many widely used
models threatens the public perception of artificial intelli-
gence. Unfortunately, the needs are seemingly at odds (Ek-
strand, Joshaghani, and Mehrpouyan 2018; Cummings et al.
2019; Bagdasaryan, Poursaeed, and Shmatikov 2019; Far-
rand et al. 2020; Chang and Shokri 2021; Agarwal 2021).
Common fairness and privacy objectives are in conflict, be-
cause privacy-preserving algorithms often disproportionally
affect members of minority classes (Farrand et al. 2020).1
The exact nature of this trade-off has not been analyzed,
however, and perhaps more surprisingly, there has been no
evaluations of whether learning algorithms that were devel-
oped with group fairness in mind, such as Sagawa et al.
(2020), are less sensitive to optimization with DP-SGD.
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1Note this is a different trade-off than the fairness-privacy trade-
off which results from the need for collecting sensitive data to learn
fair models (Veale and Binns 2017).

Figure 1: A few datapoints from CivilComments including
demographic identities (Koh et al. 2021)

Contributions We evaluate the impact on fairness (Un-
equal Risk) of using DP-SGD optimization, across three
settings: PCA, logistic regression and Group-DRO (Sagawa
et al. 2020). For the baseline condition, we confirm past re-
sults and establish a negative correlation between fairness
and privacy. We further show that this negative correlation
is logarithmic. Moreover, we show that DP-SGD has little
impact on fairness in the PCA setting. This, however, seems
to because differentially private dimensionality reduction is
insufficient to guarantee the privacy of downstream classi-
fiers.

Fairness and Privacy
We represent each data point as z = (x, g, y) ∈ X ×G ×Y ,
with g ∈ G encoding its protected attributes (e.g., race, gen-
der). Let Dgy denote the distribution of data with protected
attribute g and label y. Several definitions of fairness exist
(Williamson and Menon 2019), but we use (generalized) ap-
proximately constant conditional (equal) risk (Donini et al.
2018):

Definition 0.1 (δ-Unequal Risk). Let `gi(θ) =
E[`(θ(x), y)|g = gi] be the risk of the samples in the
group defined by gi, and δ ∈ [0, 1]. We say that a model θ
exhibits δ-Unequal Risk if for any two values of g, say gi
and gj , |`gi(θ)− `gj (θ)| < δ.

Note that if ` coincides with the performance metric of a
task, and δ = 0, this is identical to performance or classifi-
cation parity (Yuan et al. 2021).2 δ directly measures what

2Such a notion of fairness can be derived from John Rawls’ the-
ory on distributive justice and stability, treating model performance
as a resource to be allocated. Rawls’ difference principle, maximiz-
ing the welfare of the worst-off group, is argued to lead to stability
and mobility in society at large (Rawls 1971). Performance or clas-



is sometimes called Rawlsian min-max fairness (Bertsimas,
Farias, and Trichakis 2011). Recall the standard definition of
(ε, φ)-privacy3 is as follows:
Definition 0.2 ((ε, φ)-privacy). θ is (ε, φ)-private iff
Pr[θ(X )] ≤ exp(ε) × Pr[θ(X ′)] + φ for any two distribu-
tions, X and X ′, different at most in one row.
Differential privacy ensures that an algorithm will generate
similar outputs for similar training data sets. Note the mul-
tiplicative bound exp(ε) and the additive bound φ serve dif-
ferent roles: The φ term represents the possibility that a few
data points are not governed by the multiplicative bound,
which controls the level of privacy (rather than its scope).
Note that it also follows directly that if ε = 0 and φ = 0,
absolute privacy is required, leading θ to be independent of
the data. In our experiments, we assume φ = 0 and look at
the impact of DP-SGD training across different values of ε.

Agarwal (2021) shows that a (ε, 0)-private and fully fair
model – using equalized odds as the definition of fairness
– will be unable to learn anything. To see this, remember
that a fully private model is independent of the data and un-
able to learn from correlations between input and output. If
θ is, in addition, required to be fair, it is thereby required to
be fair for all distributions, which prevents θ from encoding
any prior beliefs about the output distribution. Equal odds is
often less interesting for NLP applications than equal risk,
but note this finding generalizes straight-forwardly to equal-
ized risk, and to approximate fairness (since even for finite
distributions, we can define a δ > 0, such that preserving
absolute privacy leads to a constant θ).
Theorem 1. For sufficiently small values of ε, a fully (ε, 0)-
private model θ that is also δ-fair, will have trivial perfor-
mance.

Proof. This follows directly from the above.

We focus on δ-Unequal Risk below, but for completeness
include alternative definitions. While δ-Unequal Risk only
considers the difference between extremes, δ-Variance con-
siders the overall F1-score variance across the groups, with
δ = σ2 defined as the mean of the squared distances of `gi

from their mean ¯̀gi , i.e..,
∑n

i=1(`gi− ¯`gi )2

n . Often Unequal
Risk is contrasted with Equal Odds, i.e., the idea that fair-
ness requires similar positive rates across groups. Zafar et al.
(2017) introduce the so-called p%-rule, a variant of Equal
Odds, which we will also adopt below. In the binary case,
we say a model θ exhibits p-Equal Odds if

p = min
i,j

min(
E[θ(X gi)]
E[θ(X gj )]

,
E[θ(X gj )]

E[θ(X gi)]
)

Note that if the p%-rule returns 1.0, θ exhibits 1.0-Equal
Odds, which amounts to identical positive rates across

sification parity has, however, been argued to suffer from statistical
limitations in (Corbett-Davies and Goel 2018), which remind us
that when risk distributions differ, standard error metrics are poor
proxies of individual equity. This is known as the problem of infra-
marginality. Note, however, that this argument does not apply to
binary classification problems.

3We talk about (ε, φ)-privacy rather than (ε, δ)-privacy, to
avoid confusion with δ-fairness.

Figure 2: Baseline performance (F1) across groups

groups. It is easy to show that p ∈ [0, 1], with higher val-
ues suggesting fairness under Equal Odds. We modify the
p%-rule, which serves as a compromise between Unequal
Risk and Equal Odds.
Definition 0.3 (Modified p%-rule). We say a model θ ex-
hibits p-Equally Correct Priors if

p = min
i,j

min(

E[θ(Xgi )]
E[Ygi ]

E[θ(Xgj )]
E[Ygj ]

,

E[θ(Xgj )]
E[Ygj ]

E[θ(Xgi )]
E[Ygi ]

)

This definition says the divergence from the positive class
prior should be no different across any two groups. Note
how this, unlike δ-Unequal Risk, says nothing about the ac-
tual risk of misclassification. It is merely a weighted version
of p-Equal Odds, which takes the true priors into account.
We report results for δ-Variance and the p%-rule in the Ap-
pendix, and focus on δ-Unequal Risk and the Modified p%-
rule here.

Experiments
Our experiments evaluate the impact of differential privacy
(Dwork et al. 2006) on the fairness of different machine
learning architectures. Differentially private stochastic gra-
dient descent (DP-SGD) is the de facto baseline approach
to learning private models, and we limit ourselves to vari-
ants of DP-SGD. Vanilla DP-SGD limits the influence of
training samples by (i) clipping the per-batch gradient where
its norm exceeds a pre-determined clipping bound C, and
by (ii) adding Gaussian noise N characterized by a noise
scale σ to the aggregated per-sample gradients. We con-
trol this influence with a privacy budget ε, where lower
values for ε indicates a more strict level of privacy. DP-
SGD has remained popular, among other things because it
generalizes to iterative training procedures (McMahan et al.
2018), and supports tighter bounds using the Rényi method
(Mironov 2017a). We evaluate the impact of differentially
private training on fairness across dimensionality reduction,
linear classification, and deep learning.

Bertweet and DistilBert Transformer architectures are
often trained with masked language modeling objectives to
learn representations that are useful for downstream NLP



tasks (Devlin et al. 2019a; Liu et al. 2019). We use two pre-
trained, Transformer-based language models: (a) Bertweet
(Nguyen, Vu, and Nguyen 2020) is trained on English tweets
with the same hyper-parameters as the original BERT-base
model (Devlin et al. 2019b). DistilBert (Sanh et al. 2020)
is induced by distillation of BERT (Devlin et al. 2019a) to
obtain a more efficient and smaller version of it.

Principal Component Analysis Principal components
are linear combinations or mixtures of the initial variables
and internally uncorrelated to minimize the information loss.
We rely on the IBM Differential Privacy Library (Diff-
privlib)4 (Holohan et al. 2019) for DP-PCA, which relies
on Imtiaz and Sarwate (2016), who add Wishart noise to
this reconstruction to obtain ε-privacy. Their algorithm is
shown to approximate the underlying data well, especially
for ε ≥ 1. Alternatives are discussed in ?. We apply DP-
PCA to Bertweet representations of CivilComments and
pass these to a three-layer feed-forward network. We varied
ε-values in [0.1,10] with a step-size of 0.5, and performed
grid search for the hyper-parameters of the feed-forward net-
work. Its dimensionality was given (768, 64, and 32 in the
outermost layer), but all other parameters were optimized for
validation performance: We trained for 2979 epochs, with
learning rate 1e−06, MSE loss, AdamW optimization, and a
batch size of 32.

Logistic Regression We also evaluate the impact of DP-
SGD on linear classification. In logistic regression, the
weighted sum of model parameters and input is transformed
to probabilities by the logistic function, with parameters fit
to minimize logistic loss with DP-SGD. We train 400 mod-
els with ε ∈ {0.1, 0.2, 0.3, 39.9, 40}. Again, we rely on
Bertweet and Diffprivlib.

Group Distributionally Robust Optimization We also
consider a deep architecture optimized for group fairness,
namely GroupDRO (Sagawa et al. 2020), which relies on
distributionally robust optimization (Hashimoto et al. 2018)
to minimize the worst-case loss over the groups in the train-
ing data. We use DP-SGD in Opacus5 (AI 2020) to imple-
ment differentially private GroupDRO. DP-SGD was gener-
alized to deep learning in Abadi et al. (2016); Opacus uses
Renyi Differential Privacy (RDP) (Mironov 2017b).

Data We use Civil Comments (Koh et al. 2021), a toxic-
ity detection dataset in which comments are annotated for
toxicity and the demographics of the target of toxicity (see
Fig. 1). TThe task is a binary classification task. There are
eight target groups:6 LGBTQ, male, female, Christian, Mus-
lim, other religions, Black, and White. For simplicity, we

4https://github.com/IBM/differential-privacy-library
5https://github.com/pytorch/opacus
6We cite the names used in the publicly available dataset. It

is unclear to what extent the names impacted annotations. Some
seem to represent communities that can in part be referred to by
other, more general or more specific, terms, e.g., LGBT, LGBTQ+,
the Rainbow Community. By using this data, we do not mean to
imply that these terms are useful for referring to groups of citizens.
We use CivilComments simply because it is the most widely dis-
tributed NLP dataset for fairness studies.

only use data from these groups: Prior work has shown that
toxicity classifiers pick up on biases in the training data and
spuriously associate toxicity with the mention of certain de-
mographics (Borkan et al. 2019). Thus, for classifying the
toxicity of online comments, the setup shown in Figure 1 en-
sures that we are able to keep track of fairness by analysing
scores across different groups.

Figure 3: Top (Linear Classification): Logarithmic corre-
lations between ε (x) and accuracy (y) (first row), ε and
Unequal Risk (second, left), and ε and the modified p%-
rule (second, right). Bottom (Deep GroupDRO): Logarith-
mic correlation between ε (x) and accuracy (y) (third), ε
and Unequal Risk (fourth, left), and the modified p%-rule
(fourth, right).

Results
The baseline F1 scores across the eight groups are plotted
in Figure 2. Scores significantly across the eight groups,
with lowest toxicity detection scores for minority religious
groups and Christians, and highest toxicity detection scores
for blacks and whites, reportedly being the prototypical tar-
gets for American and European racist slur (Croom 2015).
Generally, PCA reduces performance slightly, while our
GroupDRO architecture performs slightly better than our
baseline with fixed Bertweet embeddings. We are mainly in-

https://github.com/IBM/differential-privacy-library
https://github.com/pytorch/opacus


terested in how overall performance and fairness is affected
by DP-SGD.

Figure 3 (second row) shows the correlation between the
degree of approximate privacy and Unequal Risk for linear
classification: The more private a model, the less fair. This
correlation contrasts with the positive correlation between ε
and accuracy (first): The more private a model, the worse it
performs. Note that both of these correlations are significant
(p < 0.001) and logarithmic and have similar coefficients.

GroupDRO with DistilBert exhibits similar correlations;
see Figure 3. While odds become logarithmically more equal
with higher ε values for linear models, odds exhibit high
variance for GroupDRO and are not significantly correlated
with ε. The fact that GroupDRO exhibit a similar, nega-
tive, logarithmic correlation between ε and Unequal Risk, is
particularly interesting, since GroupDRO assumes access to
group information during training and uses this information
to learn a model with Equal Risk. Under sufficient privacy
guarantees, the approach is ineffective, however.

In contrast, with PCA, we see a weak, linear correlation
between ε and performance: The less privacy, the better per-
formance, again, but differences are minimal (absolute drops
in accuracy within a 0.5 margin). We also see a weak, nega-
tive, linear correlation between ε and Unequal Risk: The less
privacy, the more fairness, but this correlation is not signifi-
cant. At first sight, it may seem promising that differentially
private dimensionality reduction does not lead to Unequal
Risk. The same pattern is seen across all the fairness mea-
sures. However, this is unfortunately not a case of getting the
best of both worlds: Our feed-forward network seems to be
able to recover private information from our dimensionality-
reduced representations. To see why this may happen, con-
sider that the algorithm presented in Imtiaz and Sarwate
(2016) is only approximate and not providing strict guar-
antees. It adds stochastic noise to each dimension indepen-
dently, and only provides expected guarantees. The more di-
mensions that carry signal, the higher the chance that private
information is recoverable. The sensitivity of differentially
private dimensionality reduction has been observed before
(Aggarwal 2005). We hypothesize that our feed-forward net-
work in a way similar to spectral filtering (Kargupta et al.
2003) can filter off the random noise by implicitly analyzing
eigenstates.

Discussion and Conclusion
The trade-off between fairness and privacy is of great con-
cern to the machine learning community, but previous work
has not suggested promising research directions for how to
best solve this dillemma. Our results go beyond previous
work on the trade-offs between fairness and privacy (Bag-
dasaryan, Poursaeed, and Shmatikov 2019; Agarwal 2021)
in evaluating this trade-off across multiple machine learning
settings and in establishing logarithmic correlations between
fairness and privacy across two different settings: linear clas-
sification and robust deep learning. Finally, we also provide
an example of a successful attack against differentially pri-
vate dimensionality reduction by training a three-layer feed-
forward network on the learned representations of DP-PCA.

Uniyal et al. (2021) presented a proposal, which exhib-
ited a better trade-off, empirically. Liu et al. (2021) pre-
sented an approach to fairness and privacy that relies on a
self-adaptive mechanism and dynamically adjusts instance
influence in each class depending on the theoretical bias-
variance bounds.7 Fioretto, Tran, and Hentenryck (2021)
proposes various solutions, including output perturbations,
linearizations, learning piece-wise linear proxy-functions, or
fairness payment. These methods have several drawbacks,
and most are not generally applicable. Piece-wise linear
proxy-functions and GroupDRO assume that demograph-
ics are available during training, which limits their appli-
cation severely. In summary, finding robustly applicable ap-
proaches to simultaneously optimizing for fairness and pri-
vacy remains an open problem. Our contributions are (a)
showing the logarithmic nature of this correlation, suggest-
ing the usefulness of maximizing the second order gradi-
ent of this trade-off; (b) showing this holds even for group-
robust deep learning; and (c) showing, by example, that
seemingly good results for both fairness and privacy may be
the result of implicit privacy attacks, when deep classifiers
exploit privacy leaks.

Based on a sequence of experiments with toxicity detec-
tion, relying on large-scale pretrained language models, this
paper established the logarithmic nature of the relationship
between fairness and privacy, in the form of DP-SGD, and
showed that this logarithmic nature generalizes to models
trained to optimize for fairness (with GroupDRO). More-
over, we saw that when applied to dimensionality reduction,
DP-SGD did not seem to violate fairness. This anomaly was
explained by leakage of private information, however. We
discussed possible research directions for jointly learning
private and fair machine learning models, a topic we believe
to be of great importance to the future of artificial intelli-
gence.
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