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Abstract
We propose a method for learning deep kernels that are inca-
pable of distinguishing certain distributions, e.g. populations
that differ only with respect to a sensitive attribute. Specif-
ically, we find representations based on a simple kernel on
top of a deep feature extraction network, and train them to
simultaneously be capable of distinguishing certain pairs of
input distributions but incapable of distinguishing others. We
extend the previous literature on optimizing test power by re-
fining existing unbiased estimators and using new tricks to
effectively operate with small training batches. We evaluate
our methods on image datasets where straightforwardly hid-
ing these sensitive attributes from the model would be diffi-
cult, but our approach succeeds at removing them.

Introduction
Image-based machine learning systems, especially deep
convolutional neural networks, are increasingly used for
critical and sensitive real-life decisions. The importance of
designing non-discriminatory learning algorithms that can
mitigate various biases, like gender and race (among many
others), is crucial to building trustworthy AI systems. This
is especially challenging on unstructured high-dimensional
domains like images where sensitive facial features like per-
ceived gender, skin color/race, etc. cannot be isolated and
specified directly as a separate input parameter to the model.
To reliably use images for a variety of real-world tasks, we
need methods that can learn not to exploit or depend on
these sensitive attributes. To this end, we propose a kernel-
based approach to preserve invariance to particular types of
attributes in images, maintaining privacy not only of any fea-
tures directly establishing the sensitive attribute, but also the
possibility of reconstructing that attribute from other aspects
of the input.

Ideally, if a learned system is fair with respect to a sen-
sitive feature, then it will not be able to distinguish be-
tween distributions of images conditioned on different val-
ues of the sensitive feature, for instance images of dark-
skinned or light-skinned faces. Using the framework of two-
sample testing, statistical tests with our learned representa-
tion should not be able to distinguish between the two condi-
tional distributions: the power of the test (the probability that
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such a test rejects the null hypothesis that the two distribu-
tions are identical) should be zero. At the same time, the sys-
tem must be able to tell apart sets of images that differ with
respect to the feature of interest for a downstream task: a test
on this attribute should have high power. To achieve these si-
multaneous goals, we learn a single kernel parameterized by
a deep neural network by maximizing the power of one test
based on the maximum mean discrepancy (MMD; Gretton
et al. 2012), while simultaneously minimizing the power of
another test. To do this effectively and reliably while training
with small batches, we improve existing unbiased estimates
of the variance of the MMD estimator.

Preliminaries
Maximum Mean Discrepancy (MMD) The MMD (Gret-
ton et al. 2012) is used to measure the distance between dis-
tributions. It is defined in terms of a kernel on individual
elements (e.g. an image), k : X × X → R, where X is the
domain of the elements, e.g. the set of conceivable images.
If X,X ′ ∼ P and Y, Y ′ ∼ Q, where P,Q are probability
distributions on X , then:

MMD(P,Q; k) =
√
E[k(X,X ′) + k(Y, Y ′)− 2k(X,Y )].

With a characteristic kernel k, MMD(P,Q; k) = 0 if and
only if P = Q. While optimizing the test power objective,
we will use the U-statistic estimator, which is unbiased for
MMD2 and has nearly minimal variance among unbiased
estimators:

M̂MD
2

U(SP, SQ; k) =
1

m(m− 1)

∑
i ̸=j

Hij

Hij = k(Xi, Xj) + k(Yi, Yj)− k(Xi, Yj)− k(Yi, Xj),

where SP = {X1, . . . , Xm}, SQ = {Y1, . . . , Ym} are i.i.d.
samples from P and Q respectively.1

Two-Sample Testing Based on i.i.d. samples SP, SQ from
P and Q respectively, the two-sample testing problem asks
whether SP, SQ come from the same distribution – that is,
does P = Q? We use the null hypothesis testing framework,
i.e. ask whether we can confidently say that the observed

1The MVUE would simply also include the k(Xi, Yi) terms;
the difference in practice is trivial, but this form is slightly simpler
and allows for exact expressions for the variance.



SP, SQ would be unlikely to be so different if P = Q. Tra-
ditional methods include t-tests and Kolmogorov-Smirnov
tests, but do not scale to complex high-dimensional distribu-
tions.

MMD-based tests with a kernel k reject the null
hypothesis H0 that P = Q if the scaled estima-

tor m M̂MD
2

U(SP, SQ; k) is larger than the threshold
cα, where cα is such that the scaled estimator will
usually be smaller than cα under the null hypothesis:

PrH0

(
m M̂MD

2

U(SP, SQ; k) > cα

)
≤ α. (The estimate is

scaled by m because, as m grows, this choice makes cα con-
verge to a value depending on P = Q and k but independent
of m.)

There are several options for estimating cα, but the one
usually currently considered best is permutation testing: ran-
domly re-assign the sampled points to S′, S′′ and track

m M̂MD
2

U(S, S
′′; k) many times, then take the (1−α) quan-

tile of that distribution (Sutherland et al. 2017).

Choosing a Powerful Kernel MMD tests work well when
the choice of kernel k is appropriate, but for complicated dis-
tributions with reasonable numbers of samples, we usually
need to choose an appropriate k rather than sticking to an a
priori choice. In general, we wish to find the most power-
ful test: the one with the highest probability of correctly re-
jecting the null hypothesis when the alternative is true. This
probability is asymptotically

PrH1

(
m M̂MD

2

U > tα

)
→ Φ

(
MMD2 −cα/m√

Vm

)
, (1)

where Φ is the CDF of a standard normal, and Vm is the vari-
ance of the M̂MD

2

U estimator for samples of size m from
P and Q with the kernel k (Sutherland et al. 2017, Equa-
tion 2). Note that none of the terms here are random: this
is the probability of rejecting a random sample pair SP, SQ
in terms of m, k and the distributions. This formula comes
from an asymptotic normality result for the estimator when
P ̸= Q (Serfling 1980).

Previous work (Sutherland et al. 2017; Liu et al. 2020) has
sought a powerful kernel k by maximizing an estimator of
the right-hand side of (1) – or, rather, of its most important
component MMD2 /

√
Vm.

Deep Kernels We choose to look for the best kernel from
a parameterized family of deep kernels. Specifically, we take
kω as a Gaussian kernel κ on the output of a featurizer net-
work ϕω , kω = κω(ϕω(x), ϕω(y)). Here, ϕω is a deep neural
network that extracts features from input images x, whose
parameters are contained within ω, and κω is a Gaussian
kernel on those features whose lengthscale σϕ is also con-
tained in ω. These types of kernels have seen success across
a variety of areas (e.g. Wilson et al. 2016; Li et al. 2017;
Jean, Xie, and Ermon 2018). Liu et al. (2020) use stochastic
gradient methods to choose ω maximizing an estimator of
MMD2 /

√
Vm; more on the Vm estimator shortly.

Privacy-Preserving Deep Kernels
Like prior work, our goal is to find parameters ω such that kω
has high power at distinguishing target distributions; unlike
prior work, we wish to do this while also being unable to
distinguish sensitive distribution pairs (very low power).

Let Pa and Qa be conditional distributions on a dataset
that only differ by the conditioning value of a feature at-
tribute a, and take corresponding sample sets SPa , SQa . For
instance, Pa might be the distribution of light-skinned faces
from a particular data generating distribution, and Qa that of
dark-skinned faces.

To learn a kernel that can preserve privacy with respect to
a sensitive attribute s while being able to perform well on
downstream tasks dependant on a target attribute t, we use
a multi-objective optimization paradigm to simultaneously
minimize the hypothesis test power with respect to s and
maximize the test power with respect to t. Our optimization
problem is therefore

argmin
ω

Φ

M̂MD
2

U

s

− ĉsα
m

V̂
s

m

−Φ

M̂MD
2

U

t

− ĉtα
m

V̂
t

m

 , (2)

and where each of M̂MD
2

U

a

, ĉaα, and V̂
a

m denote the relevant
quantity for SPa , SQa with the kernel kω for brevity. We now
discuss the choice of estimator V̂m.

Unbiased Estimator of the MMD Variance To estimate
the power of the hypothesis test in (2), we need a reliable

estimate of the variance of M̂MD
2

U with m samples.
Using general results about U -statistics (Serfling 1980),

this variance is precisely 4(m−2)
m(m−1)ζ1 + 2

m(m−1)ζ2, where
ζ1, ζ2 depend on P, Q, and k but not m. Bounliphone et al.
(2016) used the theory of MMD to evaluate the population
value of the higher-order term ζ1, and proposed an estimator
for that quantity computable in the same quadratic time it

takes to compute M̂MD
2

U. Sutherland et al. (2017) corrected
some accidental sources of statistical bias, and also esti-
mated ζ2 (in the same time complexity). Their correction,
however, was also mistakenly still slightly biased; Suther-
land (2019) corrected this, giving an unbiased estimator for
the exact variance – except her estimator was again mis-
taken (this time due to a simple typo). We will also improve
the estimator in another way shortly.

Liu et al. (2020) instead used only the leading term 4ζ1/m
in their variance estimator and an intentionally biased es-
timator of ζ1, which is much simpler to derive and imple-
ment (without, to our knowledge, a long line of mistaken
derivations). When training with large batch sizes as they
did, this bias is small, and overall much simpler. In our set-
tings, however, we found notably better performance by us-
ing the (correct) unbiased estimator; we are forced to use
fairly small batch sizes in some contexts, and minimizing
the power might also behave differently than maximizing it.

The power of a test depends on how many samples m it
uses, intuition which can be confirmed from (1). In the ob-
jective (2), the choice of m in ĉα/m and V̂m should be the



m at which we want to conduct our final test.2 This does
not mean, however, that we need to estimate these popula-
tion quantities based on m samples. Instead, we can estimate
them based on a batch of n samples, e.g. if we wish to run
minibatch optimizers and then conduct our final tests with
larger sample sizes. We thus also allow for n ̸= m in our
version of the V̂m estimator, which we now present.

Define the n× n matrix KXY by (KXY)ij = k(Xi, Yj),
and KXX, KYY similarly. Let K̃XX, K̃YY be KXX, KYY

with their diagonals set to zero and 1 be the n-vector of
all ones. We will also use falling factorial notation (n)k =

n(n− 1) · · · (n− k + 1). Then, our estimator V̂m based on
n samples, which is unbiased (E V̂m = Vm), is

4(mn+m− 2n)

(m)2(n)4

[∥∥∥K̃XX1
∥∥∥2 + ∥∥∥K̃YY1

∥∥∥2]
− 2(2m− n)

mn(m− 1)(n− 2)(n− 3)

[∥∥∥K̃XX

∥∥∥2
F
+
∥∥∥K̃YY

∥∥∥2
F

]
+

4(mn+m− 2n− 1)

(m)2n2(n− 1)2

[
∥KXY1∥2 +

∥∥∥KXY
T1

∥∥∥2]
− 4(2m− n− 2)

(m)2n(n− 1)2
∥KXY∥2F

− 2(2m− 3)

(m)2(n)4

[
(1TK̃XX1)2 + (1TK̃YY1)2

]
− 4(2m− 3)

(m)2n2(n− 1)2
(1TKXY1)2

− 8

m(n)3

[
1TK̃XXKXY1+ 1TK̃YYKXY

T1
]

+
8

mn(n)3

[
(1TK̃XX1+ 1TK̃YY1)(1TKXY1)

]
.

Although the expression is perhaps intimidating, it only re-
quires taking additional sums of the same kernel matrices we
already needed to compute for the MMD estimate, as well as
a few extra vector-vector products. It is also amenable to au-
tomatic differentiation. The derivation of this estimator uses
the same techniques as the earlier approaches, but, compared
to Sutherland (2019), allows for m ̸= n and fixes a mistake
in the order of a leading term. Because this estimator can be
negative, in practice we regularize by taking the maximum
of it and a small positive λ.

Moving Average of the Variance The estimator V̂m is
fairly noisy with small batch size n; for kernels where the
value Vm is small, the division by V̂m in the denominators
of (2) is likely to exacerbate that noise. We thus reduce the
variance by keeping an exponentially weighted moving av-
erage of V̂m computed on training minibatches, and using
that in our objective. The data points feeding into the esti-
mate are the same as if we didn’t use the moving average,

2Because the Gaussian kernel is characteristic, it would only
be possible to achieve exactly zero power even for extremely large
m with a ϕω that is perfectly invariant to the sensitive attribute s;
even if that were feasible, using m → ∞ in (2) would destroy the
gradient signal to reach that point, since the power would remain
at 1 with any local modification.

but it helps place us in the right part of the 1/
√
x function,

which can dramatically improve practical performance with
smaller batch sizes.

Gradient of the Threshold Estimate Unlike previous
work in this area, it is important to our applications to also
have a differentiable estimate of ĉα: note that simply disre-
garding it would lead to a power estimator that almost can-
not return a number less than 0.5, perhaps not a huge prob-
lem when maximizing power but certainly concerning when
minimizing it. We use the permutation estimate mentioned
earlier and described in detail by Sutherland et al. (2017),
although we implement it in PyTorch based on matrix mul-
tiplication rather than the direct C++ implementation of that
work. Automatic differentiation through that process gives a
reasonable estimate of the gradient of cα.

Experiments
3DShapes Dataset 3Dshapes (Burgess and Kim 2018) is
a dataset of images of 3D shapes generated from six ground
truth independent latent factors: shape, scale, orientation,
object color, wall color and floor color. The dataset contains
all possible combinations of these latent factors, giving a to-
tal of 480,000 images. For our experiment, we first split the
dataset randomly into train, test and val sets with a ratio of
80 : 10 : 10 samples. We pick one of the six latent factors
to be the sensitive attribute s and another to be the target
attribute t. To build the sample sets, we choose two of the
possible discrete values of s, s1 and s2; we sample SPs uni-
formly from the portion of the dataset with s = s1, and SQs

from points with s = s2. SPt and SQt are similarly taken
from t = t1 and t = t2, respectively. Figure 1 shows a few
samples from these conditional distributions.

Training Details Our deep neural network contains a con-
volutional image featurizer with five convolutional layers,
interspersed with LeakyReLU activations and batch normal-
ization layers. The features extracted by the convolutional
network are flattened and passed into a fully connected layer
that learns a 300-dimensional representation of the input im-
age. We use the Adam (Kingma and Ba 2017) optimizer
with a batch size of 64 images per conditional distribution:
images from SPa and SQa are concatenated to form a total
batch size of 128. The output features from the network are
fed to a simple Gaussian kernel whose length scale σϕ is also
a part of the network’s learnable parameters. The learning
rate and coefficient of the moving average for the variance of
the MMD estimator are tuned using Bayesian hyperparam-
eter optimization (Snoek, Larochelle, and Adams 2012) on
a validation set to minimize the power loss (2). All models
were trained thrice with different initializing random seeds.

Results Figure 1c shows the estimate of (1) for the tar-
get attribute (shape) and sensitive attribute (color), tracked
through the course of training. The target attribute quickly
shoots to essentially perfect power, while the sensitive at-
tribute decreases to around 0.4 to 0.5 power. In this case, we
have notably decreased the estimated power of the kernel on
the sensitive attribute, but were not able to drive it all the
way to zero.



(a) Samples from the conditional
object color = red.

(b) Samples from the conditional
shape = square.

(c) Validation curves of test power (1) for the target and sensitive
attributes during training.

Figure 1: Training a kernel to distinguish shape while ignoring color on Shapes3D.

Attribute Power est. Emp. power SVM acc.
Shape (t) 1.000 0.7181 0.8953

Object Color (s) 0.4137 0.0478 0.5057
Wall Color – – 0.4912

Scale – – 0.6852

(a) Targeting shape, with object color sensitive.
Attribute Power est. Emp. power SVM acc.
Scale (t) 1.000 0.8333 0.9172

Orientation (s) 0.4464 0.0638 0.5248
Wall color – – 0.7869

Shape – – 0.7804

(b) Targeting scale, with orientation sensitive.
Attribute Power est. Emp. power SVM acc.

Shape 0.5000 1.000 0.9492
Object Color 0.5000 1.000 0.9498

Scale 0.5000 1.000 0.9495
Orientation 0.5000 1.000 0.9529

(c) A simple gaussian kernel on image pixels.

Table 1: Ability of different kernels, two trained by our
method and one fixed, to distinguish various attributes.

Table 1a shows results of the final kernel on the test set,
both for the estimated power (1) and the empirical power
(the portion of times the test rejects the null hypothesis). Ta-
ble 1b shows results for a different attribute pair, training
with scale as the target attribute and orientation sensitive;
the analogue of Fig. 1c looks very similar.

Using the Kernel Downstream We further demonstrate
that our learned kernel has the desired empirical privacy
properties by using it to train a support vector machine
(SVM). Table 1 also shows the mean test accuracy of an
SVM with the given kernel when cross-validating on a test
set held out during kernel selection. The trained kernels are
able to classify their target attribute, but only barely able
to classify the sensitive attribute. (If the MMD is small be-
tween two distributions, then a kernel classifier to distin-
guish those distributions will necessarily have large norm.)

We also use the learned kernels to train an SVM to classify
other attributes the kernel was not trained on and observe
that the performance there lies between the accuracies of the
target and sensitive attributes. This indicates that the kernels
learned by our method is able to concentrate most on the de-
sired attributes and least on the sensitive attributes while still
being able to exploit the remaining features in the images.

Comparison to a Gaussian Kernel Table 1c additionally
shows the same results for a simple Gaussian kernel applied
directly on the image pixel values. It is reasonably able to
distinguish all attributes both in terms of an SVM classifier
accuracy as well as empirical test power indicating that “hid-
ing” the sensitive attribute from a classifier was a nontrivial
task and learning a kernel to do so is effective in training a
fair classifier.

Discussion

We proposed a method to learn a kernel-based representa-
tion of a dataset that is insensitive to certain sensitive at-
tributes. This problem is closely related to the idea of “fair”
representation learning, but compared to the dominant ap-
proaches in that area based on e.g. the Variational Fair Au-
toencoder (Louizos et al. 2016), our approach based on two-
sample testing avoids the need for generative modeling; in
our experience the power criterion (with our unbiased esti-
mator and moving average estimate) is easier to effectively
minimize than the direct MMD term used in that work. Fu-
ture work will focus on expanding our understanding of this
method, such as further studying options for handling sev-
eral values of given attributes, and of course studying more
complex datasets, potentially also with complex dependence
patterns between attributes.
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