
Secure Federated Feature Selection

Lun Wang1*, Qi Pang2*, Shuai Wang2, Dawn Song1

1 UC Berkeley, 2 HKUST
wanglun@berkeley.edu, qpangaa@cse.ust.hk, shuaiw@cse.ust.hk, dawnsong@cs.berkeley.edu

Abstract

In this paper, we propose a secure federated feature selection
protocol, whose core is a secure federated χ2-test protocol,
namely FED-χ2. In FED-χ2, we recast χ2-test, a correlation
test, as a second frequency moment estimation problem and
use stable projection to encode the local information in a short
vector. As such encodings can be aggregated with summation,
secure aggregation can be applied to conceal the individual
updates. We formally establish the security guarantee of FED-
χ2 by demonstrating that the joint distribution is hidden in a
subspace containing exponentially possible distributions. Our
evaluation results show that (1) FED-χ2 achieves good accu-
racy with small client-side computation overhead; (2) feder-
ated feature selection based on FED-χ2 performs comparably
to the centralized feature selection with χ2-test.

1 Introduction
Federated learning emerged as a new paradigm for large-
scale machine learning due to its privacy superiority that
the users’ raw data never leave their local devices. However,
vanilla federated learning lacks formal security guarantee
and is shown to be vulnerable to a variety of attacks that
infer the users’ local data property by observing the users’
updates (Nasr, Shokri, and Houmansadr 2019; Pustozerova
and Mayer 2020; Chase, Ghosh, and Mahloujifar 2021). To
mitigate, Bonawitz et al. (2017) proposed the well-celebrated
secure aggregation protocol to only reveal the summed update
to the server. Bell et al. (2020) further developed the protocol
to improve its communication cost.

Although the security guarantee of FL can be significantly
enhanced by secure aggregation, other non-linear learning-
related tasks are not compatible with secure aggregation, a
representative of which is feature selection. One of feature
selection algorithms calculates the correlation score between
features and target and keeps the features highly correlated
with the target. In the present work, we study a representative
correlation test, namely χ2-test, under the federated setting.
There are two straightforward methods for conducting χ2-
test in such a context. First, clients can upload their raw data
to the centralized server and delegate the test to it. While this
method is effective in terms of communication, it entirely

*The authors contribute equally to this paper.
Submitted to The Third AAAI Workshop on Privacy-Preserving
Artificial Intelligence.

exposes the clients’ private information. Second, clients may
run secure multiparty computation (MPC) under the server’s
coordination. Thus, clients can jointly run χ2-test without
disclosing their data to the server. However, general-purpose
MPC imposes significant computation and communication
overhead, which is typically intolerable in a federated setting
with computationally limited clients, e.g., mobile devices.

To address the dilemma, we present a federated protocol
optimized for χ2-test that is computationally and communi-
cationally efficient and discloses limited information to the
server. We begin by recasting χ2-test as a second frequency
moment estimation problem. To approximate the second fre-
quency moment in a federated setting, each client encodes
its raw data into a low-dimensional vector via stable random
projection (Indyk 2006; Vempala 2005; Li 2008). Such en-
codings can be aggregated with only summation, allowing
clients to leverage secure aggregation (Bonawitz et al. 2017;
Bell et al. 2020) to aggregate the encodings and the server to
decode them to approximate the second frequency moment.
Because secure aggregation conceals each client’s individual
update within the aggregated global update, the server learns
only limited information about the clients’ data.

Our evaluation on four synthetic datasets and 12 real-world
datasets shows that FED-χ2 can replace centralized χ2-test
with good accuracy and low computation overhead. Addition-
ally, we analyze FED-χ2 in three real-world use cases: feature
selection, cryptanalysis, and online false discovery rate con-
trol. The results show that FED-χ2 can achieve comparable
performance with centralized χ2-test and can withstand up
to 20% of clients dropping out with minor influence on the
accuracy. In summary, we make the following contributions:

We propose FED-χ2, the first secure federated χ2-test pro-
tocol. FED-χ2 is computation- and communication-efficient
and leaks much less information than trivially deploying se-
cure aggregation.

FED-χ2 decomposes χ2-test into frequency moments es-
timation that can easily be encoded/decoded using stable
projection and secure aggregation techniques. We give for-
mal security proof and utility analysis of FED-χ2.

We evaluate FED-χ2 in real-world use cases, and the find-
ings suggest that FED-χ2 can substitute centralized χ2-test
with comparable accuracy, and FED-χ2 can tolerate up to
20% of clients dropout with minor accuracy drop.

2 Related Work
Bonawitz et al. (2017) proposed the well-celebrated secure
aggregation protocol as a low-cost way to calculate linear
functions in a federated setting. It has seen many variants and
improvements since then. For instance, Truex et al. (2019)
and Xu et al. (2019) employed advanced crypto tools for se-
cure aggregation, such as threshold homomorphic encryption
and functional encryption. So, Güler, and Avestimehr (2021)
proposed TURBOAGG, which combines secure sharing with
erasure codes for better dropout tolerance. To improve com-
munication efficiency, Bell et al. (2020) and Choi et al. (2020)
replaced the complete graph in secure aggregation with either
a sparse random graph or a low-degree graph.

Secure aggregation is deployed in a variety of applications.
Agarwal et al. (2018) added binomial noise to local gradients,
resulting in both differential privacy and communication ef-
ficiency. Wang, Jia, and Song (2020) replaced the binomial
noise with discrete Gaussian noise, which is shown to ex-
hibit better composability. Kairouz, Liu, and Steinke (2021)
proved that the sum of discrete Gaussian is close to discrete
Gaussian, thus discarding the common random seed assump-
tion from Wang, Jia, and Song (2020). The above three works
all incorporate secure aggregation in their protocols to lower
the noise scale required for differential privacy. Chen et al.
(2020) added an extra public parameter to each client to force
them to train in the same way, allowing for the detection of
malicious clients during aggregation. Nevertheless, designing
secure federated correlation tests, despite its importance in
real-world scenarios, is not explored by existing research.

On the other end of the spectrum, Wang, Pinelis, and Song
(2021) proved that stable projection is differentially private if
the projection matrix is secret. In our protocol, the projection
matrix is public information; hence FED-χ2 does not consider
the differential privacy guarantee.

3 Federated Correlation Test
In this section, we elaborate on the design of FED-χ2, a se-
cure federated protocol for χ2-test. We first formalize the
problem, establish the notation system, and introduce the
threat model. Then we recast χ2-test as a second frequency
moment estimation problem in the federated setting, and con-
sequently, we are able to leverage stable projection to encode
each client’s local information, and then aggregate them us-
ing secure aggregation. At last, we present security proof,
utility analysis, communication analysis, and computation
analysis of FED-χ2.

3.1 Problem Setup
We now formulate the federated correlation test and establish
the notation system. We use [n] to denote {1, · · · , n}. We
denote vectors with bold lower-case letters (e.g., a,b, c) and
matrices with bold upper-case letters (e.g., A,B,C).

We consider a population of n clients C = {ci}i∈[n]. Each
client has one share of local data composed of the triplets
Di = {(x, y, v(i)xy)}, x ∈ X , y ∈ Y, v(i)xy ∈ {−M, · · · ,M},
where x and y are categories of the contingency table, v(i)xy is
the observed counting of the categories x and y in the local
contingency table of the ith client, |X | = mx and |Y| = my

are finite domains, and M is the maximum value |v(i)xy | can
be. The global dataset is defined asD = {(x, y, vxy) : vxy =∑

i∈[n] v
(i)
xy}. We focus on federated χ2-test and the data in

contingency table is discrete. For the ease of presentation,
we define the marginal statistics vx =

∑
y∈[|Y|] vxy, vy =∑

x∈[|X |] vxy, and v =
∑

x∈[|X |],y∈[|Y|] vxy. Besides, we

define v̄xy =
vx×vy

v , denoting the expectation of vxy if x
and y are uncorrelated. We define m = mxmy and use
an indexing function I : [mx] × [my] → [m] to obtain
a uniform indexing given the indexing of each variable.
A centralized server S calculates the statistics for χ2-test
sχ2(D) =

∑
x∈[|X |],y∈[|Y|]

(vxy−v̄xy)
2

v̄xy
on the global dataset

to decide whether X and Y are correlated without collecting
the raw data from clients.

Overall, using MPC to conduct secure correlation tests in a
federated scenario is highly expensive and impractical (Boyle,
Chung, and Pass 2015; Damgård et al. 2012). Hence, in the
present work, we trade off accuracy for efficiency, as long
as the estimation error is small with a high probability. For-
mally, if FED-χ2 outputs ŝχ2 , whose corresponding standard
centralized χ2-test output is sχ2 , the following accuracy re-
quirement should be satisfied with small ϵ and δ.

P[(1− ϵ)sχ2 ≤ ŝχ2 ≤ (1 + ϵ)sχ2] ≥ 1− δ

Threat Model. We assume that the centralized server S is
honest but curious. It honestly follows the protocol due to
regulatory or reputational pressure but is curious to discover
extra private information from clients’ legitimate updates for
profit or surveillance purposes. As a result, client updates
should contain as little sensitive information as feasible. We
want to emphasize that, while the server may explore the
privacy of clients, the server will honestly follow the protocol
due to regulation or reputational pressure. The server won’t
provide adversarial vectors to the clients.

On the other hand, we assume honest clients. Specifically,
we do not consider client-side adversarial attacks (e.g., data
poisoning attacks (Bagdasaryan et al. 2020; Bhagoji et al.
2019)). However, we allow a small portion of clients to drop
out during the execution.

3.2 From Correlation Test to Frequency Moments
Estimation

We first recast correlation test to a second frequency mo-
ments estimation problem as defined below. Given a set of
key-value pairs S = {ki, vi}i∈[n], we re-organize it into a
histogramH = {kj , vj =

∑
ki=kj ,i∈[n] vi}, and estimate the

αth frequency moments as Fα =
∑

j v
α
j . χ2-test can thus be

recast to a 2nd frequency moments estimation problem:

sχ2(D) =
∑
x,y

(vxy − v̄xy)
2

v̄xy
=

∑
x,y

(
vxy − v̄xy√

v̄xy
)2

In federated setting, each client ci holds a local dataset
Di = {(x, y, v(i)xy)} and computes a vector ui, where

ui[I(x, y)] =
v(i)
xy−v̄xy/n√

v̄xy
and ui has m elements. Thus, the

challenge in federated χ2-test becomes calculating the fol-
lowing equation:

sχ2(D) =
∑
x,y

(
vxy − v̄xy√

v̄xy
)2 = ||

∑
i∈[n]

ui||22

3.3 Encoding by Stable Projection & Decoding by
Geometric Mean Estimator

To address the aforementioned challenges and to easily in-
tegrate the algorithm into secure aggregation protocols, we
use stable random projection (Indyk 2006; Vempala 2005)
and geometric mean estimator (Li 2008) to approximate the
data’s second frequency moment efficiently. We begin by
discussing stable distributions, followed by the encoding and
decoding techniques.
Definition 1 (α-stable distribution). A random variable X
follows an α-stable distribution Qα,β,F if its characteristic
function is as follows.

ϕX(t) = exp(−F |t|p(1−
√
−1β sgn(t) tan(

πα

2
)))

, where F is the scale to the αth power and β is the skewness.
α-stable distribution is named due to its property called

α-stability. Briefly, the sum of independent α-stable variables
still follows an α-stable distribution with a different scale.
Definition 2 (α-stability). If random variables X ∼
Qα,β,1, Y ∼ Qα,β,1 and X and Y are independent, then
C1X + C2Y ∼ Qα,β,Cα

1 +Cα
2

.
We borrow the genius idea from Indyk’s well-celebrated

paper (Indyk 2006) to encode the frequency moments in the
scale parameter of a stable distribution defined in Definition 1.
To encode the local dataset Di = {(x, y, v(i)xy)}, each client
ci, i ∈ [n], is given by the server an ℓ×m projection matrix
P whose values are drawn independently from an α-stable
distribution Qα,β,1, where ℓ is the encoding size and m =
mxmy. The client re-organizes the data into a vector ui,
where ui[I(x, y)] = v

(i)
xy . Then, the client projects ui to ei =

P× ui as the encoding (line 2 in Alg. 1).
To decode, the server first sums the encodings up e =∑
i∈[n] ei and estimates the scale of the variables in the ag-

gregated encoding with an unbiased geometric mean estima-
tor (Li 2008) in line 4 of Alg. 1. According to the α-stability
defined in Definition 2, every element ek in e, k ∈ [ℓ], fol-
lows this stable distribution: ek ∼ Q2,0,||

∑
i∈[n] ui||22 . Thus,

the l2 norm can be estimated by calculating the scale of the
distribution Q2,0,||

∑
i∈[n] ui||22 with e containing ℓ elements.

During the above processes, ui and
∑

i∈[n] ui are not
leaked and the aggregation among clients is calculated
with only summation. Thus, secure aggregation protocols
can be naturally applied with quantization. Furthermore,
ℓ = c

ϵ2 log(1/δ) suffices to guarantee that the second fre-
quency moment can be approximated with a 1± ϵ factor and
a probability no less than 1− δ. We will further analyze the
utility of FED-χ2 in Sec. 3.6.

3.4 Secure Federated Correlation Test
The complete protocol for FED-χ2 is presented in Alg. 2.
Firstly, the marginal statistics vx, vy and v are calculated with
secure aggregation and broadcasted to all clients (lines 1–6
in Alg. 2). This step can be omitted if the marginal statistics
are already known. Then, on the server side, a projection
matrix P is sampled from an α-stable distribution Qℓ×m

2,0,1.
The projection matrix is broadcasted to all clients (lines 8–10
in Alg. 2). For each client ci, the local data is re-organized

Algorithm 1: The encoding and decoding scheme for
federated frequency moments estimation. Note that
the encoding and decoding themselves do not provide
any security guarantee.

1 Function ENCODE(P, ui):
2 return P× ui

3 Function GEOMETRICMEANESTIMATOR(e):
4 d̂(2),gm ←

∏ℓ
k=1 |ek|2/ℓ

(2
π
Γ(2

ℓ
)Γ(1− 1

ℓ
) sin(π

ℓ
))ℓ

// ℓ is the

encoding size.

5 return d̂(2),gm
6 Function DECODE(e):
7 return GEOMETRICMEANESTIMATOR(e)

into ui and projected to ei as encoding (lines 11–14 in Alg. 2).
Then, the encoding results will be quantized and aggregated
with secure aggregation (line 15 in Alg. 2). As we have
already known the marginal statistics in the first round, the
quantization bound can be set accordingly. Additionally, we
can use high precision for quantization, such as 64 bits, since
the size of the contingency table is normally moderate rather
than enormous. Thus, the precision of the quantized float
number is comparable to or even better than that of float64,
and hence we disregard the effect of quantization on accuracy.
Finally, the server gets the χ2-test result using the decoding
algorithm described in Alg. 1 (line 17 in Alg. 2).

Dropouts in the first round have no effect on the test’s
accuracy because they can be recovered inside secure aggre-
gation (Bonawitz et al. 2017; Bell et al. 2020). On the other
hand, dropouts in the second round will affect the accuracy
of the test. Still, because the χ2 value is typically far from the
decision threshold, FED-χ2 is intrinsically robust to a small
portion of clients dropping out (see Section 4 for empirical
assessment).

3.5 Security Analysis
In this paper, we choose the state-of-the-art secure aggrega-
tion protocol by Bell et al. (Bell et al. 2020), which replaces
the complete graph with a sparse random graph to enhance
communication efficiency. We clarify that FED-χ2 can incor-
porate other popular secure aggregation protocols. We now
prove the security enforced by Alg. 2 via a standard simula-
tion proof process (Lindell 2017) on the basis of Theorem 1.

Theorem 1 (Security). Let Π be an instantiation of Alg. 2
with the secure aggregation protocol in Alg. 4 of Appendix C
with cryprographic security parameter λ. There exists a PPT
simulator SIM such that for all clients C, the number of
clients n, all the marginal distributions {vx}, {vy}, and all
the encodings {ei}, the output of SIM is indistinguishable
from the view of the real server ΠC in that execution, i.e.,
ΠC ≈λ SIM(

∑
ei, n).

Intuitively, Theorem 1 illustrates that no more information
about the clients except the averaged updates is revealed to
the centralized server. Thus, each client’s update is hidden
by the rest clients in secure aggregation. We now present the
formal proof for Theorem 1.

Algorithm 2: FED-χ2: secure federated χ2-test.
SECUREAGG is a remote procedure that receives in-
puts from the clients and returns the summation to the
server. INITSECUREAGG is the corresponding setup
protocol deciding the communication graph and other
hyper-parameters.

1 Round 1: Reveal the marginal statistics
2 INITSECUREAGG(n) // n is the client

number.

3 for x ∈ [mx] do vx = SECUREAGG({v(i)x }i∈[n])

4 for y ∈ [my] do vy = SECUREAGG({v(i)y }i∈[n])
5 Server
6 Calculate v =

∑
x vx and broadcast v, {vx} and

{vy} to all the clients.
7 Round 2: Approximate the statistics
8 Server
9 Sample the projection matrix P fromQℓ×m

2,0,1

10 Broadcast the projection matrices to the clients
11 Client ci, i ∈ [n]
12 Calculate v̄xy =

vxvy
v

13 Prepare ui s.t. ui[I(x, y)] =
v
(i)
xy−v̄xy/n√

v̄xy

14 Calculate ei = ENCODE(P, ui)
15 e = SECUREAGG(QUANTIZE({ei}i∈[n]))
16 Server
17 ŝχ2 = DECODE(e)

Proof for Theorem 1. To prove Theorem 1, we need the fol-
lowing lemma.

Lemma 1 (Security of secure aggregation protocol). Let SE-
CUREAGG be the secure aggregation protocol in Alg. 4 of
Appendix C instantiated with cryprographic security param-
eter λ. There exists a probabilistic polynomial-time (PPT)
simulator SIMSA such that for all clients C, the number of
clients n, and all inputs X = {ei}i∈[n], the output of SIMSA
is perfectly indistinguishable from the view of the real server,
i.e., SECUREAGGC ≈λ SIMSA(

∑
i∈[n] ei, n).

Lemma 1 is derived from the security analysis of our em-
ployed secure aggregation protocol (Theorem 3.6 in Bell
et al. (2020)), which establishes that the secure aggregation
protocol securely conceals the individual information in the
aggregated result. With this lemma, we are able to prove the
theorem for federated χ2-test by presenting a sequence of
hybrids that begin with real protocol execution and end with
simulated protocol execution. We demonstrate that every two
consecutive hybrids are indistinguishable, illustrating that the
hybrids are indistinguishable according to transitivity.

HYB1 This is the view of the server in the real protocol
execution, REALC .

HYB2 In this hybrid, we replace the view during the ex-
ecution of each SECUREAGG({v(i)x }i∈[n]) in line
3 of Alg. 2 with the output of SIMSA(vx, n) one
by one. According to Lemma 1, each replacement
does not change the indistinguishability. Hence,
HYB2 is indistinguishable from HYB1.

HYB3 Similar to HYB2, we replace the view during the
execution of each SECUREAGG({v(i)y }i∈[n]) in
line 4 of Alg. 2 with the output of SIMSA(vy, n)
one by one. According to Lemma 1, HYB3 is in-
distinguishable from HYB2.

HYB4 In this hybrid, we replace the view during the
execution of SECUREAGG({ei}i∈[n]) in line 15
of Alg. 2 with the SIMSA(

∑
ei, n). This hybrid is

the output of SIM. According to Lemma 1, HYB4

is indistinguishable from HYB3.

Remark: what does Alg. 2 leak? By Theorem 1, we show
that individual updates of clients are perfectly hidden in the
aggregated results and FED-χ2 leaks no more than a linear
equation system: 

P× v = eT

J1,my × VT = vT
x

J1,mx × V = vT
y

, where J1,mx
and J1,my

are 1×mx and 1×my unit matrices,
V is an mx ×my matrix whose elements are {vxy}, and v
is a vector flattened by V. To understand this, information
leaked by FED-χ2 includes the estimation e and marginal
statistics vx and vy . The following theorem establishes an im-
portant fact: the above equation system has an exponentially
large solution space, which effectively conceals the real joint
distribution. We thus believe that Alg. 2 practically ensures
privacy due to the solution space’s vastness.
Theorem 2. Given a projection matrix P ∈ Zℓ×m

q , {vx},
{vy} and e, there are at least qm−ℓ−mx−my feasible choices
of {vxy}.
Proof sketch for Theorem 2. As demonstrated above, the
given information forms a linear equation with mx +my + ℓ
equations. Given m > mx +my + ℓ, the rank of the coef-
ficient matrix is no more than mx + my + ℓ. Solving the
equations with Smith normal form, we know that the solution
space is at least (m−mx −my − ℓ)-dimensional. With the
following lemma, we manage to prove Theorem 2.

Lemma 2. There are qr×c vectors in the subspace of Zr×c
q .

3.6 Utility Analysis
In this section, we conduct the utility analysis in terms of
multiplicative error. We show that the output of FED-χ2, ŝχ2 ,
is a fairly accurate approximation (parameterized by ϵ) to the
correlation test output sχ2 in the standard centralized setting
with high probability parameterized by δ.
Theorem 3 (Utility). Let Π be an instantiation of Alg. 2
with secure aggregation protocol in Alg. 4 of Appendix C.
Π is parameterized with ℓ = c

ϵ2 log(1/δ) for some constant
c. After executing ΠC on all clients C, the server yields ŝχ2 ,
whose distance to the accurate correlation test output sχ2 is
bounded with high probability as follows:

P[ŝχ2 < (1− ϵ)sχ2 ∨ ŝχ2 > (1 + ϵ)sχ2] ≤ δ

Proof sketch for Theorem 3. First, we introduce the follow-
ing lemma from Li (2008).

Lemma 3 (Tail bounds of geometric mean estimator (Li
2008)). The right tail bound of geometric mean estimator is:

P(ŝχ2 − sχ2 > ϵsχ2) ≤ exp(−ℓ ϵ2

GR
)

, where ϵ2

GR
= C1 log(1 + ϵ) − C1γe(α − 1) −

log(2πΓ(αC1)Γ(1 − C1) sin(
παC1

2)), α = 2 in our setting,
C1 = 2

π tan−1(log(1+ϵ)
(2+α2)π/6), and γe = 0.577215665... is the

Euler’s constant.
The left tail bound of the geometric mean estimator is:

P(ŝχ2 − sχ2 < −ϵsχ2) ≤ exp(−ℓ ϵ2

GL
)

, where ℓ > ℓ0, ϵ2

GL
= −C2 log(1 −

ϵ) − log(− 2
πΓ(−αC2)Γ(1 + C2) sin(

παC2

2)) −
ℓ0C2 log(

2
πΓ(

α
ℓ0
)Γ(1− 1

ℓ0
) sin(π2

α
ℓ0
)), and C2 = 12

π2
ϵ

(2+α2) .

With Lemma 3, Taking c ≥ max(GR, GL) and δ =

exp(− ℓϵ2

c), we are able to prove P[ŝχ2 < (1 − ϵ)sχ2 ∨
ŝχ2 > (1 + ϵ)sχ2] ≤ δ, and the above bound holds when
ℓ = c

ϵ2 log(1/δ).

3.7 Communication & Computation Analysis
In this section, we present the communication and computa-
tion cost of Alg. 2.

Theorem 4 (Communication Cost). Let Π be an instantia-
tion of Alg. 2 with secure aggregation protocol in Alg. 4 of
Appendix C, then (1) the client-side communication cost is
O(log n+mx+my + ℓ); (2) the server-side communication
cost is O(n log n+ nmx + nmy + nℓ).

Theorem 5 (Computation Cost). Let Π be an instantia-
tion of Alg. 2 with secure aggregation protocol in Alg. 4
of Appendix C, then (1) the client-side computation cost is
O(log2 n+ (ℓ+mx +my) log n+mℓ); (2) the server-side
computation cost isO(n log2 n+n(ℓ+mx+my) log n+ℓ).

Compared with the original computation cost presented
in (Bell et al. 2020), the client-side overhead has an extra
O(mℓ) term. This term is incurred by the encoding overhead.
We also give an empirical evaluation on the client-side com-
putation overhead in Sec. 4.1. Please refer to Appendix D for
the detailed proof of Theorem 4 and Theorem 5.

4 Evaluation
Experiment Setup. To assess FED-χ2’s accuracy, we sim-
ulate it on four synthetic datasets and 12 real-world datasets.
We compare the multiplicative errors of FED-χ2 with that of
the standard centralized χ2-test. The four synthetic datasets
are independent, linearly correlated, quadratically correlated,
and logistically correlated. As the real-world datasets, we
report the details in Appendix E.

Additionally, we evaluate FED-χ2’s utility in federated
feature selection and another two applications of FED-χ2:
cryptanalysis and online FDR control. For feature selection,
we report the model accuracy trained on the selected features.
For cryptanalysis, we report the success rate of cracking

ciphertexts. For Online FDR control, we report the average
false discovery rate. We compare the performance of FED-
χ2 with that of the centralized χ2-test in each of the three
experiments. Unless otherwise specified, experiments are
launched on an Ubuntu 18.04 LTS server equipped with 32
AMD Opteron(TM) Processor 6212 and 512GB RAM.

4.1 Evaluation Results
Accuracy. We begin by evaluating the accuracy of FED-χ2,
as illustrated in Fig. 1. Each point represents the mean of
100 independent runs with 100 clients, while the error bars
indicate the standard deviation. We choose mx = my = 20
in this experiment. Note that the accuracy drop is independent
of the number of clients.

From Fig. 1, we observe that the larger the encoding size
ℓ, the smaller the multiplicative error. When ℓ = 50, the
multiplicative error ϵ ≈ 0.2. This conforms with Theorem 3,
in which the multiplicative error ϵ =

√
c
ℓ log(1/δ) decreases

as ℓ increases.
We also evaluate the power (Cohen 2013) of FED-χ2. We

set the p-value threshold as 0.05, which determines whether
or not to reject the null hypothesis. From The dashed lines
in Fig. 1, we can tell that the power of FED-χ2 is high. This
conforms with our observation on the multiplicative errors.
Specifically, since the χ2 values are typically far from the
decision threshold, a multiplicative error of 0.2 rarely flips
the final decision.

We also present the results when 5% of clients drop out
in the second round of FED-χ2 in Fig. 1. The results show
that FED-χ2 is robust to a small portion of dropouts. In Ap-
pendix B, we present the results in terms of 10%, 15%, and
20% dropout rates.

Client-side Computation Overhead. To assess extra com-
putation overhead incurred by FED-χ2 on the client side, we
measure the execution time of the encoding scheme on an
Android 10 mobile device equipped with a Snapdragon865
CPU and 12GB RAM. We use PyDroid (Sandeep Nandal
2020) to run the client-side computation of FED-χ2 on the
Android device.

The results are shown in Fig. 2. Each point represents
the average of 100 separate runs, with accompanying error
bars. The overhead is negligible. For example, for a 500 ×
500 contingency table, the encoding takes less than 30ms.
The overhead grows linearly in relation to mx (my) and
consequently quadratically in Fig. 2, where mx equals my .

4.2 Feature Selection.
We first evaluates secure federated feature selection using
FED-χ2. The setting is that each client holds data with a large
feature space and wants to collaborate with other clients to
rule out unimportant features and retain features with top-k
highest χ2 scores. We use Reuters-21578 (Hayes and Wein-
stein 1990), a standard text categorization dataset (Yang 1999;
Yang and Pedersen 1997; Zhang and Yang 2003), and pick
the top-20 most frequent categories using 17,262 training
and 4,316 test documents. These documents are distributed
randomly to 100 clients, each of whom receives the same
number of training documents. After removing all numbers

Error of no dropout Error of 5% dropout ACC of no dropout ACC of 5% dropout

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(a) Synthetic Data 1.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(b) Synthetic Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(c) Synthetic Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(d) Synthetic Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(e) Data 1.
20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(f) Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(g) Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(h) Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(i) Data 5.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(j) Data 6.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(k) Data 7.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(l) Data 8.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(m) Data 9.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(n) Data 10.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(o) Data 11.
10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(p) Data 12.
Figure 1: Multiplicative error and accuracy of FED-χ2 w.r.t. encoding size ℓ w/ and w/o dropout.

100 200 300 400 500
0

10

20

30

40

mx (my)

A
vg

.E
nc

od
in

g
Ti

m
e

(m
s)

Figure 2: Client-side encoding overhead when mx = my .

and stop-words, we obtain 167,135 indexing terms. After
performing feature selection using FED-χ2, we select the top
40,000 terms with the highest χ2 scores. When compared
with the centralized χ2-test, 38,012 (95.03%) of the selected
terms are identical, indicating that FED-χ2 produces highly
consistent results with the standard χ2-test.

We then train logistic regression models using the terms
selected by FED-χ2 and the centralized χ2-test, respectively.

0 30 60 90 120 150
40

50

60

70

80

Epoch

M
od

el
A

cc
ur

ac
y

(%
)

no feature selection
FED-χ2 no dropout
FED-χ2 10% dropout
FED-χ2 20% dropout
centralized χ2-test

Figure 3: Accuracy of the model trained with features selected by
FED-χ2 and centralized χ2-test.

All hyper-parameters are the same. The details of these mod-
els are reported in Appendix F. The results in Fig. 3 further
demonstrate that FED-χ2 exhibits comparable performance
with the centralized χ2-test. When 10% and 20% of clients
dropout in the second round of FED-χ2, the accuracy of the
trained model using the features selected by FED-χ2 does not
drop much. We also examine performance without feature

selection, and as expected, model accuracy is significantly
greater after feature selection. Note that the model without
feature selection has 2,542,700 more parameters than the
model with feature selection. Hence, feature selection effec-
tively improves model accuracy while reducing model size
and computational cost.

4.3 Other Downstream applications.
Cryptanalysis. In the second case study, we explore feder-
ated cryptanalysis with FED-χ2. We break Caesar cipher (Lu-
ciano and Prichett 1987), a classic substitution cipher, with
FED-χ2. In a Caesar cipher, each letter in the plaintext is re-
placed by another letter with some fixed number of positions
down the alphabet. For instance, each English letter can be
right-shifted by three, converting the plaintext “good” to the
ciphertext “jrrg”. There are 26 possible shifts when given 26
English letters. The plaintext can be cracked in a shortcut by
performing a correlation test on the ciphertext in relation to
normal English text.

10 20 30 40 50
85

90

95

100

Encoding Size ℓ

C
or

re
ct

R
at

e
(%

)

no dropout
10% dropout
20% dropout

Figure 4: The success rate of cracking Caesar ciphers.

In our setting, each client is assumed to possess a segment
of the Caesar ciphertext. To collaboratively crack the cipher-
text, these clients run 26 χ2-tests to determine the correlation
level between each ciphertext letter and the letters in nor-
mal English text. The χ2-test yielding the highest correlation
level elucidates how English letters are encrypted into Caesar
ciphertexts.

We take Shakespeare’s lines as the plaintext and encrypt
it into a Caesar ciphertext with a length of 1000 characters.
We initiate the cracking process on ten non-overlapping ci-
phertexts to compute the average success rate (see Fig. 4).
In general, the larger the encoding size, the more precise the
χ2-statistics is, and consequently the higher the success rate.
Again, according to Theorem 3, the multiplicative error ϵ
decreases as the encoding size increases. In Fig. 4, we also
report the success rate when 10% and 20% of clients dropout
in Round two of FED-χ2, respectively. Even if 20% of clients
dropout, the success rate can still be 100% as long as the
encoding size ℓ is larger than 20.

Online False Discovery Rate Control. In the third case
study, we explore federated online false discovery rate (FDR)
control (Foster and Stine 2008) with FED-χ2. In an online
FDR control problem, a data analyst receives a stream of
hypotheses on the database, or equivalently, a stream of p-
values: p1, p2, · · · . At each time t, the data analyst should

10 50 100 150 200 250 300
0

5

10

15

20

Encoding Size ℓ

FD
R

(%
)

no dropout
10% dropout
20% dropout

Figure 5: Average FDR w.r.t. ℓ for SAFFRON with FED-χ2.

pick a threshold αt to reject the hypothesis when pt < αt.
The error metric is the false discovery rate, and the objective
of online FDR control is to ensure that for any time t, the
FDR up to time t is smaller than a pre-determined quantity.

We use the SAFFRON procedure (Ramdas et al. 2018),
the state-of-the-art online FDR control, for multiple hypoth-
esis testing. The χ2 results and corresponding p-values are
calculated by FED-χ2. We present the detailed algorithm of
SAFFRON and the hyper-parameters used in our evaluation
in Appendix G. The size of the randomly synthesized contin-
gency table is 20× 20. Each time, there are 100 independent
hypotheses, with a probability of 0.5 that each hypothesis is
either independent or correlated. The time sequence length is
100, and the number of clients is 10. The data are synthesized
from a multivariate Gaussian distribution. For the correlated
data, the covariance matrix is randomly sampled from a uni-
form distribution. For the independent data, the covariance
matrix is diagonal, and its entries are randomly sampled from
a uniform distribution.

At time t, we use FED-χ2 to calculate the p-values pt of
all the hypotheses, and then use the SAFFRON procedure
to estimate the reject threshold αt using pt. The relationship
between the average FDR and encoding size ℓ is shown in
Fig. 5. We observe that the variance of independent runs is
very small, so we omit the error bars. The results indicate
that by increasing the encoding size ℓ, FED-χ2 can achieve a
low FDR of less than 5.0%. We also observe that dropouts
improve the performance of FED-χ2 in this case study. The
reason for this is because dropouts reduce the estimated χ2

value, which increases the probability of accepting the null
hypothesis in FED-χ2. As a larger portion of queries follows
the null hypothesis in online FDR control, the accuracy also
increases. The results further demonstrate that FED-χ2 can be
employed in practice to facilitate online FDR control using a
secure federated correlation test.

5 Conclusion
This paper takes an important step towards designing non-
linear secure aggregation protocols in the federated setting.
Specifically, we propose a universal secure protocol to eval-
uate frequency moments in the federated setting. We focus
on an important application of the protocol: χ2-test. We give
formal security proof and utility analysis on our proposed se-
cure federated learning χ2-test protocol FED-χ2 and validate
them with empirical evaluations and case studies.

References
Agarwal, N.; Suresh, A. T.; Yu, F.; Kumar, S.; and Mcma-
han, H. B. 2018. cpSGD: Communication-efficient and
differentially-private distributed SGD. arXiv preprint
arXiv:1805.10559.
Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; and Shmatikov,
V. 2020. How to backdoor federated learning. In Interna-
tional Conference on Artificial Intelligence and Statistics,
2938–2948. PMLR.
Bell, J. H.; Bonawitz, K. A.; Gascón, A.; Lepoint, T.; and
Raykova, M. 2020. Secure single-server aggregation with
(poly) logarithmic overhead. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications
Security, 1253–1269.
Bhagoji, A. N.; Chakraborty, S.; Mittal, P.; and Calo, S. 2019.
Analyzing federated learning through an adversarial lens. In
International Conference on Machine Learning, 634–643.
PMLR.
Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMa-
han, H. B.; Patel, S.; Ramage, D.; Segal, A.; and Seth, K.
2017. Practical secure aggregation for privacy-preserving ma-
chine learning. In proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, 1175–
1191.
Boyle, E.; Chung, K.-M.; and Pass, R. 2015. Large-scale
secure computation: Multi-party computation for (parallel)
RAM programs. In Annual Cryptology Conference, 742–762.
Springer.
Chase, M.; Ghosh, E.; and Mahloujifar, S. 2021. Property
Inference From Poisoning. arXiv preprint arXiv:2101.11073.
Chen, Y.; Luo, F.; Li, T.; Xiang, T.; Liu, Z.; and Li, J. 2020.
A training-integrity privacy-preserving federated learning
scheme with trusted execution environment. Information
Sciences, 522: 69–79.
Choi, B.; Sohn, J.-y.; Han, D.-J.; and Moon, J. 2020.
Communication-Computation Efficient Secure Aggregation
for Federated Learning. arXiv preprint arXiv:2012.05433.
Cohen, J. 2013. Statistical power analysis for the behavioral
sciences. Academic press.
Damgård, I.; Pastro, V.; Smart, N.; and Zakarias, S. 2012.
Multiparty computation from somewhat homomorphic en-
cryption. In Annual Cryptology Conference, 643–662.
Springer.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Reposi-
tory.
Foster, D. P.; and Stine, R. A. 2008. α-investing: a procedure
for sequential control of expected false discoveries. Journal
of the Royal Statistical Society: Series B (Statistical Method-
ology), 70(2): 429–444.
Govindaraj, Praveen. 2021. Credit Risk Classifi-
cation Dataset: Is Customer Risky or Not Risky?
https://www.kaggle.com/praveengovi/credit-risk-
classification-dataset. Online; accessed 22 April 2021.
Hayes, P. J.; and Weinstein, S. P. 1990. CONSTRUE/TIS: A
System for Content-Based Indexing of a Database of News
Stories. In IAAI, volume 90, 49–64.

Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; and
Igel, C. 2013. Detection of Traffic Signs in Real-World
Images: The German Traffic Sign Detection Benchmark. In
International Joint Conference on Neural Networks, 1288.
Indyk, P. 2006. Stable distributions, pseudorandom genera-
tors, embeddings, and data stream computation. Journal of
the ACM (JACM), 53(3): 307–323.
Kairouz, P.; Liu, Z.; and Steinke, T. 2021. The Distributed
Discrete Gaussian Mechanism for Federated Learning with
Secure Aggregation. arXiv preprint arXiv:2102.06387.
Kohavi, R. 1996. Scaling up the accuracy of naive-bayes
classifiers: A decision-tree hybrid. In Kdd, volume 96, 202–
207.
Kohavi, Ronny and Becker, Barry. 2021. UCI Machine Learn-
ing Repository: Adult Data Set. https://archive.ics.uci.edu/
ml/datasets/adult. Online; accessed 22 April 2021.
Li, P. 2008. Estimators and tail bounds for dimension reduc-
tion in lα (0 < α ≤ 2) using stable random projections. In
Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms, 10–19.
Lindell, Y. 2017. How to Simulate It – A Tutorial on the
Simulation Proof Technique, 277–346. Cham: Springer Inter-
national Publishing. ISBN 978-3-319-57048-8.
Luciano, D.; and Prichett, G. 1987. Cryptology: From Caesar
ciphers to public-key cryptosystems. The College Mathemat-
ics Journal, 18(1): 2–17.
Nasr, M.; Shokri, R.; and Houmansadr, A. 2019. Compre-
hensive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and federated
learning. In 2019 IEEE Symposium on Security and Privacy
(SP), 739–753. IEEE.
Pustozerova, A.; and Mayer, R. 2020. Information leaks
in federated learning. In Proceedings of the Network and
Distributed System Security Symposium.
Ramdas, A.; Zrnic, T.; Wainwright, M.; and Jordan, M. 2018.
SAFFRON: an adaptive algorithm for online control of the
false discovery rate. In International conference on machine
learning, 4286–4294. PMLR.
Sandeep Nandal. 2020. PyDroid. https://pypi.org/project/
pydroid/. Online; accessed 24 April 2021.
Schlimmer, Jeff. 2021. UCI Machine Learning Repository:
Mushroom Data Set. https://archive.ics.uci.edu/ml/datasets/
Mushroom. Online; accessed 22 April 2021.
So, J.; Güler, B.; and Avestimehr, A. S. 2021. Turbo-
aggregate: Breaking the quadratic aggregation barrier in se-
cure federated learning. IEEE Journal on Selected Areas in
Information Theory.
Truex, S.; Baracaldo, N.; Anwar, A.; Steinke, T.; Ludwig,
H.; Zhang, R.; and Zhou, Y. 2019. A hybrid approach to
privacy-preserving federated learning. In Proceedings of the
12th ACM Workshop on Artificial Intelligence and Security,
1–11.
Vempala, S. S. 2005. The random projection method, vol-
ume 65. American Mathematical Soc.

https://www.kaggle.com/praveengovi/credit-risk-classification-dataset
https://www.kaggle.com/praveengovi/credit-risk-classification-dataset
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://pypi.org/project/pydroid/
https://pypi.org/project/pydroid/
https://archive.ics.uci.edu/ml/datasets/Mushroom
https://archive.ics.uci.edu/ml/datasets/Mushroom

Wang, L.; Jia, R.; and Song, D. 2020. D2P-Fed: Differen-
tially private federated learning with efficient communication.
arxiv. org/pdf/2006.13039.
Wang, L.; Pinelis, I.; and Song, D. 2021. Differentially Pri-
vate Fractional Frequency Moments Estimation with Poly-
logarithmic Space. arXiv preprint arXiv:2105.12363.
Xu, R.; Baracaldo, N.; Zhou, Y.; Anwar, A.; and Ludwig,
H. 2019. Hybridalpha: An efficient approach for privacy-
preserving federated learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, 13–23.
Yang, Y. 1999. An evaluation of statistical approaches to text
categorization. Information retrieval, 1(1): 69–90.
Yang, Y.; and Pedersen, J. O. 1997. A comparative study on
feature selection in text categorization. In Icml, volume 97,
35. Nashville, TN, USA.
Zhang, J.; and Yang, Y. 2003. Robustness of regularized
linear classification methods in text categorization. In Pro-
ceedings of the 26th annual international ACM SIGIR confer-
ence on Research and development in informaion retrieval,
190–197.

Appendix
A Clarification on Privacy

As indicated in Sec. 3, the projection matrix is public in-
formation, and hence FED-χ2 does not take the differential
privacy guarantee into account. We would want to provide
more information in order to eliminate any potential misun-
derstandings.

To begin, we would want to emphasize that “privacy” in
our paper refers to MPC-style privacy, not DP-style privacy.
In general, MPC-style privacy is orthogonal to DP-style pri-
vacy: in MPC, privacy is obtained against a semi-honest
server in such a way that the server cannot witness indi-
vidual client’s updates but only an aggregate of them, e.g.
SecAgg (Bonawitz et al. 2017). In DP, privacy is accom-
plished by including random noise in each client’s update,
such that the distribution of the output result does not reveal
the clients’ private information and the server cannot infer
the clients’ identification from the output result.

Second, we would like to emphasize that our work pro-
poses a novel secure aggregation scheme particularly for the
χ2-test. Existing standard secure aggregation schemes are
inapplicable to the χ2-test, which will reveal much more in-
formation than FED-χ2, as we have clarified in Sec. 1. Again,
this work requires guaranteeing MPC-style privacy, not DP.

Third, to quantify MPC-style privacy, we prove in Theo-
rem 2 that the clients’ updates in FED-χ2 are hidden inside
a space with exponential size. This is weaker than hiding
users’ updates in the whole space, but still gives meaningful
privacy guarantees (consider attempting to guess the output
of an exponential-sided dice, which is practically infeasible).

Finally, while DP is orthogonal to this research, we would
want to emphasize that our protocol can achieve DP by intro-
ducing calibrated discrete Gaussian noise to the users’ local
updates.

B Further Results on FED-χ2 with Dropouts
We present the results of 10%, 15%, and 20% clients dropout
in Fig. 6. The results further show that FED-χ2 can tolerate a
considerable portion of clients dropout in Round 2 of Alg. 2.

C Secure Aggregation
The secure aggregation protocol from (Bell et al. 2020) is
presented in Alg. 4. The first step of the protocol is to gener-
ate a k-regular graph G, where the n vertices are the clients
participating in the protocol. The server runs a randomized
graph generation algorithm INITSECUREAGG presented in
Alg. 3 that takes the number of clients n and samples output
(G, t, k) from a distribution D. In Alg. 3, we uniformly re-
name the nodes of a graph known as a Harary graph defined
in Definition 3 with n nodes and k degrees. The graph G is
constructed by sampling k neighbours uniformly and without
replacement from the set of remaining n − 1 clients. We
choose k = O(log(n)), which is large enough to hide the
updates inside the masks. t is the threshold of the Shamir’s
Secret Sharing.

In the second step, the edges of the graph determine pairs
of clients, each of which runs key agreement protocols to
share random keys. The random keys will be used by each
party to derive a mask for her input and enable dropouts.

In the third step, each client ci, i ∈ A1 sends secret share to
its neighbors. In the fourth step, the server checks whether the
clients dropout exceeds the threshold δ, and lets the clients
know their neighbors who didn’t dropout.

In the fifth step, each pair (i, j) of connected clients
in G runs a λ-secure key agreement protocol si,j =
KA.Agree(sk1i , pk

1
j) which uses the key exchange in the

previous step to derive a shared random key si,j . The pair-
wise masks mi,j = F (si,j) can be computed, where F is the
pseudorandom generator (PRG). If the semi-honest server
announces dropouts and later some masked inputs of the
claimed dropouts arrive, the server can recover the inputs. To
prevent this happening, another level of masks, called self
masks, ri is added to the input. Thus, the input of client ci is:
yi = ei + ri −

∑
j∈NG(i),j<i mi,j +

∑
j∈NG(i),j>i mi,j .

Steps 6–8 deal with the clients dropout by recov-
ering the self masks ri of clients who are still ac-
tive and pairwise masks mi,j of the clients who have
dropped out. Finally, the server can cancel out the pair-
wise masks and subtract the self masks in the final
sum:

∑
i∈A′

2
(yi − ri +

∑
j∈NG(i)∩(A′

1\A′
2),0<j<i mi,j −∑

j∈NG(i)∩(A′
1\A′

2),i<j≤n mi,j).

Definition 3 (HARARY(n, k) Graph). Let HARARY(n, k)
denotes a graph with n nodes and degree k. This graph has
vertices V = [n] and an edge between two distinct vertices
i and j if and only if j − i (mod n) ≤ (k + 1)/2 or j − i
(mod n) ≥ n− k/2.

D Proof for Communication & Computation
Cost

We provide the proof for Theorem 4 and Theorem 5 in the
following.

Error of 10% dropout Error of 15% dropout Error of 20% dropout ACC of 10% dropout ACC of 15% dropout ACC of 20% dropout

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(a) Synthetic Data 1.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(b) Synthetic Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(c) Synthetic Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(d) Synthetic Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(e) Data 1.
20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(f) Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(g) Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(h) Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(i) Data 5.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(j) Data 6.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(k) Data 7.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(l) Data 8.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(m) Data 9.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(n) Data 10.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(o) Data 11.
10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(p) Data 12.
Figure 6: Multiplicative error and accuracy of FED-χ2 w.r.t. encoding size ℓ w/ and w/o dropout.

Algorithm 3: INITSECUREAGG: Generate Initial
Graph for SECUREAGG.

1 Function INITSECUREAGG(n):
2 ▷ n: Number of nodes.
3 ▷ t: Threshold of Shamir’s Secret Sharing.
4 k = O(log(n)).
5 Let H = HARARY(n, k).
6 Sample a random permutation π : [n]→ [n].
7 Let G be the set of edges

{(π(i), π(j))|(i, j) ∈ H}.
8 return (G, t, k)

Theorem 4 (Communication Cost). Let Π be an instanti-
ation of Alg. 2 with secure aggregation protocol from (Bell
et al. 2020), then (1) the client-side communication cost is
O(log n+mx+my + ℓ); (2) the server-side communication

cost O(n log n+ nmx + nmy + nℓ).

Proof sketch for Theorem 4. Each client performs k key
agreements (O(k) messages, line 9 in Alg. 4) and sends 3
masked inputs (O(mx+my+ℓ) complexity, lines 3, 4, 15 in
Alg. 2 and line 10 in Alg. 4). Thus, the client communication
cost is O(log n+mx +my + ℓ).

The server receives or sends O(log n + mx + my + ℓ)
messages to each client, so the server communication cost is
O(n log n+ nmx + nmy + nℓ).

Theorem 5 (Computation Cost). Let Π be an instantia-
tion of Alg. 2 with secure aggregation protocol from (Bell
et al. 2020), then (1) the client-side computation cost is
O(mx log n+my log n+ ℓ log n+mℓ); (2) the server-side
computation cost is O(mx +my + ℓ).

Proof sketch for Theorem 5. Each client computation can be
broken up as k key agreements (O(k) complexity, line

Algorithm 4: SECUREAGG: Secure Aggregation Protocol. (Algorithm 2 from Bell et al. (2020))
1 Function SECUREAGG({ei}i∈[n]):
2 ▷ Parties: Clients c1, · · · , cn, and Server.
3 ▷ l: Vector length.
4 ▷ Xl: Input domain, ei ∈ Xl.
5 ▷ F : {0, 1}λ → Xl: PRG.
6 ▷ We denote by A1, A2, A3 the sets of clients that reach certain points without dropping out. Specifically A1 consists

of the clients who finish step (3), A2 those who finish step (5), and A3 those who finish step (7). For each Ai, A′
i is

the set of clients for which the server sees they have completed that step on time.
7 (1) The server runs (G, t, k) = INITSECUREAGG(n), where G is a regular degree-k undirected graph with n nodes.

By NG(i) we denote the set of k nodes adjacent to ci (its neighbors).
8 (2) Client ci, i ∈ [n], generates key pairs (sk1i , pk

1
i), (sk

2
i , pk

2
i) and sends (pk1i , pk

2
i) to the server who forwards the

message to NG(i).
9 (3) for each Client ci, i ∈ A1 do

• Generates a random PRG seed bi.
• Computes two sets of shares:

Hb
i = {hb

i,1, · · · , hb
i,k} = ShamirSS(t, k, bi)

Hs
i = {hs

i,1, · · · , hs
i,k} = ShamirSS(t, k, sk1i)

• Sends to the server a message m = (j, ci,j), where ci,j = Eauth.Enc(ki,j , (i||j||hb
i,j ||hs

i,j)) and
ki,j = KA.Agree(sk2i , pk

2
j), for each j ∈ NG(i).

10 (4) The server aborts if |A′
1| < (1− δ)n and otherwise forwards (j, ci,j) to client cj who deduces A′

1 ∩NG(j).
11 (5) for each Client ci, i ∈ A2 do

• Computes a shared random PRG seed si,j as si,j = KA.Agree(sk1i , pk
1
j).

• Computes masks mi,j = F (si,j) and ri = F (bi).
• Sends to the server their masked input

yi = ei + ri −
∑

j∈[n],j<i

mi,j +
∑

j∈[n],j>i

mi,j

12 (6) The server collects masked inputs. It aborts if |A′
2| < (1− δ)n and otherwise sends

(A′
2 ∪NG(i), (A1\A′

2) ∪NG(i)) to every client ci, i ∈ A′
2.

13 (7) Client cj , j ∈ A3 receives (R1, R2) from the server and sends {(i, hb
i,j)}i∈R1

∪ {(i, hs
i,j)}i∈R2

obtained by
decrypting the ci,j received in Step (3).

14 (8) The server aborts if |A′
3| < (1− δ)n and otherwise:

• Collects, for each client ci, i ∈ A′
2, the set Bi of all shares in Hb

i sent by clients in A3. Then aborts if |Bi| < t and
otherwise recovers bi and ri using the t shares received which came from the lowest client IDs.

• Collects, for each client ci, i ∈ (A1\A′
2), the set Si of all shares in Hs

i sent by clients in A3. Then aborts if |Si| < t and
otherwise recovers sk1i and mi,j .

• return
∑

i∈A′
2
(yi − ri +

∑
j∈NG(i)∩(A′

1\A′
2),0<j<i mi,j −

∑
j∈NG(i)∩(A′

1\A′
2),i<j≤n mi,j).

9 in Alg. 4), generating masks mi,j for all neighbors cj
(O(k(mx+my + ℓ)) complexity, lines 3, 4, 15 in Alg. 2 and
line 10 in Alg. 4), and encoding computation cost O(mℓ)
(line 14 in Alg. 2). Thus, the client computation cost is
O(mx log n+my log n+ ℓ log n+mℓ).

The server-side follows directly from the semi-honest com-
putation analysis in Bell et al. (2020). The extra O(ℓ) term is
the complexity of the geometric mean estimator.

E Details of Datasets
The details for the real-world datasets used in Sec. 4.1 are
provided in Table 1. The license of Credit Risk Classifica-
tion (Govindaraj, Praveen 2021) is CC BY-SA 4.0, the license
of German Traffic Sign (Houben et al. 2013) is CC0: Pub-
lic Domain. Other datasets without a license are from UCI
Machine Learning Repository (Dua and Graff 2017).

F Details of Regression Models
The details of the regression models trained in feature se-
lection in Sec. 4.3 is reported in Table 2. The training and

Table 1: Dataset details.
ID Data Attr #1 A#1 Cat Attr #2 A#2 Cat
1 Adult Income (Kohavi 1996; Kohavi, Ronny and Becker, Barry 2021) Occupation 14 Native Country 41
2 Credit Risk Classification (Govindaraj, Praveen 2021) Feature 6 14 Feature 7 11
3 Credit Risk Classification (Govindaraj, Praveen 2021) Credit Product Type 28 Overdue Type I 35
4 Credit Risk Classification (Govindaraj, Praveen 2021) Credit Product Type 28 Overdue Type II 35
5 Credit Risk Classification (Govindaraj, Praveen 2021) Credit Product Type 28 Overdue Type III 36
6 German Traffic Sign (Houben et al. 2013) Image Width 219 Traffic Sign 43
7 German Traffic Sign (Houben et al. 2013) Image Height 201 Traffic Sign 43
8 German Traffic Sign (Houben et al. 2013) Upper left X coordinate 21 Traffic Sign 43
9 German Traffic Sign (Houben et al. 2013) Upper left Y coordinate 16 Traffic Sign 43
10 German Traffic Sign (Houben et al. 2013) Lower right X coordinate 204 Traffic Sign 43
11 German Traffic Sign (Houben et al. 2013) Lower right Y coordinate 186 Traffic Sign 43
12 Mushroom (Schlimmer, Jeff 2021) Cap color 10 Odor 9

testing splits are the same for FED-χ2, centralized χ2-test
and model without feature selection (i.e. there are 17,262
training and 4,316 test documents). We use the same learning
rate; random seed and all other settings are also the same to
make the comparison fair. We get the result of Fig. 3 and the
models are all trained on NVIDIA GeForce RTX 3090.

Table 2: Model details.
Task Model Size Learning Rate Random Seed

FED-χ2 40000× 20 0.1 0
Centralized χ2-test 40000× 20 0.1 0

Without Feature Selection 167135× 20 0.1 0

G SAFFRON Procedure
In Sec. 4.3, we adopt the SAFFRON procedure (Ramdas et al.
2018) to perform online FDR control. SAFFRON procedure
is currently the state of the arts for multiple hypothesis testing.
In Alg. 5, we formally present the SAFFRON algorithm.

The initial error budget for SAFFRON is (1− λ1W0) <
(1 − λ1α), and this will be allocated to different tests over
time. The sequence {λj}∞j=1 is defined by gt and λj serves
as a weak estimation of αj . gt can be any coordinate wise
non-decreasing function (line 8 in Alg. 5). Rj := I(pj < αj)
is the indicator for rejection, while Cj := I(pj < λj) is the
indicator for candidacy. τj is the jth rejection time. For each
pt, if pt < λt, SAFFRON adds it to the candidate set Ct

and sets the candidates after the jth rejection (lines 9-10 in
Alg. 5). Further, the αt is updated by several parameters like
current wealth, current total rejection numbers, the current
size of the candidate set, and so on (lines 11-14 in Alg. 5).
Then, the decision Rt is made according to the updated αt

(line 15 in Alg. 5).
The hyper-parameters we use for the SAFFRON procedure

in online false discovery rate control of Sec. 4 are aligned
with the setting in (Ramdas et al. 2018). In particular, the
target FDR level is α = 0.05, the initial wealth is W0 =
0.0125, and γj is calculated in the following way: γj =

1/(j+1)1.6∑10000
j=0 1/(j+1)1.6

.

Algorithm 5: SAFFRON Procedure.
1 Function SAFFRONPROCEDURE({p1, p2, · · · }, α,

W0, {γj}∞j=0):
2 ▷ {p1, p2, · · · }: Stream of p-values.
3 ▷ α: Target FDR level.
4 ▷ W0: Initial wealth.
5 ▷ {γj}∞j=0: Positive non-increasing sequence

summing to one.
6 i← 0 // Set rejection number.
7 for each p-value pt ∈ {p1, p2, · · · } do
8 λt ← gt(R1:t−1, C1:t−1)
9 Ct ← I(pt < λt) // Set the

indicator for candidacy Ct.

10 Cj+ ←
∑t−1

i=τj+1 Ci // Set the

candidates after the jth

rejection.
11 if t = 1 then
12 α1 ← (1− λ1)γ1W0

13 else
14 αt ← (1− λt)(W0γt−C0+

+ (α−
W0)γt−τ1−C1+ +

∑
j≥2 αγt−τj−Cj+)

15 Rt ← I(pt ≤ αt) // Output Rt.
16 if Rt = 1 then
17 i← i+ 1 // Update rejection

number.
18 τi ← t // Set the ith

rejection time.
19 return {R0, R1, · · · }

	Introduction
	Related Work
	Federated Correlation Test
	Problem Setup
	From Correlation Test to Frequency Moments Estimation
	Encoding by Stable Projection & Decoding by Geometric Mean Estimator
	Secure Federated Correlation Test
	Security Analysis
	Utility Analysis
	Communication & Computation Analysis

	Evaluation
	Evaluation Results
	Feature Selection.
	Other Downstream applications.

	Conclusion
	Clarification on Privacy
	Further Results on Fed-2 with Dropouts
	Secure Aggregation
	Proof for Communication & Computation Cost
	Details of Datasets
	Details of Regression Models
	SAFFRON Procedure

