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Abstract

Federated learning frameworks typically require collabora-
tors to share their local gradient updates of a global model
instead of sharing training data to preserve privacy. However,
prior works on Gradient Leakage Attacks showed that private
training data can be revealed from gradients. So far almost all
relevant works base their attacks on fully-connected or con-
volutional neural networks. Given the recent overwhelmingly
rising trend of adapting Transformers to solve multifarious
vision tasks, it is highly valuable to investigate the privacy
risk of vision transformers. In this paper, we analyse the gra-
dient leakage risk of self-attention based mechanism in both
theoretical and practical manners. Particularly, we propose
APRIL - Attention PRIvacy Leakage, which poses a strong
threat to self-attention inspired models such as ViT. Showing
how vision Transformers are at the risk of privacy leakage via
gradients, we urge the significance of designing privacy-safer
Transformer models and defending schemes.

Introduction

Federated learning have been gaining massive attention from
both academia and industry. For the purpose of privacy-
preserving, the typical federated learning keeps local train-
ing data private and trains a global model by sharing its gra-
dients collaboratively.

Whilst this setting prevents direct privacy leakage by
keeping training data invisible to collaborators, a recent line
of the works (Zhu, Liu, and Han 2019; Geiping et al. 2020;
Yin et al. 2021; Zhu and Blaschko 2020; Jieren et al. 2021)
demonstrates that it is possible to recover private training
data from the model gradients. This attack is dubbed gradi-
ent leakage or gradient inversion. Endeavors of the existing
threat models mainly focus on two directions: optimization-
based attacks and closed-form attacks.

Optimization-based attacks optimize an euclidean dis-
tance as follows,

min IV wliy (@i, y:) — Vali, (25, y7) |7 (1)

Deep leakage (Zhu, Liu, and Han 2019) minimizes the
matching term of gradients from dummy input (z},y;) and
those from real input (z;,y;). On the top of this proposal,
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iDLG (Zhao, Mopuri, and Bilen 2020) finds that we can de-
rive the ground-truth label from the gradient of the last fully
connected layer. Also, Geiping et al. (Geiping et al. 2020)
prove that inversion from gradient is strictly easier than re-
covery from visual representations. GradInversion (Yin et al.
2021) incorporates heuristic image prior as regularization by
utilizing BatchNorm matching loss and group consistency
loss for image fidelity.

The closed-form attack, as the other of the ingredients in
this line, is introduced by Phong et al. (Phong et al. 2018),
which reconstructs inputs using a shallow network such as
a single-layer perceptron. R-GAP (Zhu and Blaschko 2020)
is the first derivation-based approach to perform an attack
on CNNs, which models the problem as linear systems with
closed-form solutions. Compared to the optimization-based
method, analytic gradient leakage heavily depends on the ar-
chitecture of neural networks and thus cannot always guar-
antee a solution.

The previous works primarily focus on inverting gradients
from fully connected networks (FCNs) or convolutional neu-
ral networks (CNNs). One intriguing question of our interest
is that, does gradient privacy leakage occur in the context of
architectures other than FCNs and CNNs?

The recent years have witnessed a surge of methods of
Transformer (Vaswani et al. 2017). As an inherently dif-
ferent architecture, Transformer can build large scale con-
textual representation models. Inspired by the impressive
success in natural language tasks, dozens of works man-
age to integrate Transformer into various computer vision
tasks (Touvron et al. 2021; Liu et al. 2021; Carion et al.
2020; Parmar et al. 2018; Chen et al. 2020). Despite the rapid
progress of vision Transformers, there is a high chance that
vision Transformers suffer the gradient leakage risk. Nev-
ertheless, the line of the study on this privacy issue is ab-
sent. Although the prior work (Jieren et al. 2021) provides
a optimization-based attack algorithm for a Transformer-
based language model, the inherent reason of Transformer’s
vulnerability is unclear.

In this paper, we introduce a novel analytic gradient leak-
age to reveal why vision Transformers are easy to be at-
tacked. Furthermore, we explore gradient leakage by mecha-
nisms based on an optimization approach and provide a new
insight about the position embedding. Our results of gra-
dient attack will shed light on future designs for privacy-



preserving vision Transformers.

To summarize, our contributions are as follows: 1. We
prove that for the classic self-attention module, if the gradi-
ent w.r.t.input is known, the input data can be reconstructed
in a closed-form manner. 2. We demonstrate that jointly us-
ing self-attention and learnable position embedding place
the model at severe privacy risk. The attacker can obtain a
closed-form solution under certain conditions regardless of
the complexity of networks. 3. We propose an Attention Pri-
vacy Leakage (APRIL) attack to discover Archilles’ Heel.
APRIL shows our results superior to SOTA. 4. We suggest
to switch the learnbale position embedding to a fixed one as
an effective defense against privacy attacks.

APRIL: Attention PRIvacy Leakage
Analytic Gradient Attack on Self-Attention

It has been proved that the closed-form solution for input
can always be perfectly obtained on a fully-connected layer
(Phong et al. 2018). In this work, we delve into a more com-
plicated formulation of a self-attention to demonstrate the
existence of the closed-form solution.

Theorem 1. (Input Recovery). Assume a self-attention
module expressed as:

Qz=q¢Kz=kVz=uv; 2)
softmax(q - kT)
Vi
Wh = a; 4
where z is the input of the self-attention module, a is the out-
put of the module. Let QQ, K, V, W denote the weight matrix

of query, key, value and projection, and q, k, v, h denote the
intermediate feature map. Suppose the loss function is

L=1(f(a),y)

If the derivative of loss | w.r.t.the input z is known, then the
input can be recovered uniquely from the network’s gradi-
ents by solving the following linear system:
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Proof. In spite of the non-linear formulation of self-

attention modules, the gradients w.r.t.z can be derived in a
succinct linear equation:
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Again, according to the chain rule of derivatives, we can
derive the gradients w.zt.(Q, K and V from Eq. (2):
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By multiplying 2 to both sides of Eq. (5) and substituting
Eq. (6), we obtain:
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Figure 1: We consider two Transformer designs throughout
the paper. (A): Encoder modules stack multi-head attention,
normalization, and MLP in VGG-style. (B): A real-world
design as introduced in ViT (Dosovitskiy et al. 2020). The
architecture in (A) satisfies the precondition of a closed-
form APRIL attack, since the output of position embedding
is exactly input for multi-head attention, showing by the red
dashed line box. In contrast, the optimization-based APRIL
attack can be placed in any design of architectures, showing
by the yellow dashed line boxes in (A) and (B).

Solution Feasibility. Suppose the dimension of the embed-
ding z is RP*€, with patch number p and channel number c.
This linear system has p x c unknown variables yet ¢ X c lin-
ear constraints. Since deep neural networks normally have
wide channels for the sake of expressiveness, ¢ > p in most
of model designs, which leads to an overdetermined prob-
lem and thereby a solvable result. In other words, z can be
accurately reconstructed if % is available.

Position Embedding: The Achilles’ Heel

Now we focus on the how to access the critical derivative
gl by introducing the leakage caused by the position em-
bedding. Under general settings of federated learning, the
sensitive information related with z is invisible from users’
side. Here, we show that % is unfortunately exposed by gra-
dient sharing for vision Transformers with a learnable posi-

tion embedding:

Theorem 2. (Gradient Leakage). For a Transformer with

learnable position embedding E,,s, the derivative of loss
w.r.t. Epos can be given by

o ﬁ
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where ~ is defined by the linear system in Theorem 1.

Proof. Without loss of generality, the embedding z defined
by Theorem 1 can be divided into a patch embedding E,qc,
and a learnable position embedding E),, as,

zZ = Epatch + Epos (9)

Straightforwardly, we compute the derivative of loss
w.rt.E,,s using Eq. (9), Eq. (8) holds. |



Remark. The sensitive information % is exactly the same

as the gradient of the position embedding %}fos, denoting as
V E,s for simplicity. As model gradients are shared, V E,,4
is available for potential adversaries, which means a suc-
cessful attack on self-attention inputs.

While vision Transformers (Dosovitskiy et al. 2020; Wu
et al. 2021) embodies prominent accuracy raise using learn-
able position embeddings rather than the fixed ones, updat-
ing of parameter E,,¢ will result in privacy-preserving trou-
bles based on our theory. More severely, the attacker only
requires a learnable position embedding and a self-attention
stacked at the bottom in VGG-style, regardless of the com-
plexity of the rest architecture, as shown in Fig. 1 (A). At
a colloquial level, we suggest to employ fixed position em-
bedding instead of learnable one as a defensive strategy.

APRIL attacks on vision Transformer

So far the analytic gradient attack have succeeded in recon-
structing input embedding z meanwhile obtaining the gradi-
ent of position embedding V E,,s. One question is that can
APRIL take advantage of the sensitive information to further
recover the original input x. The answer is affirmative.
Closed-Form APRIL. As a matter of the fact, APRIL at-
tacker can inverse the embedding via a linear projection to
get original input pixels. For a vision Transformer, the input
image is partitioned into many patches and sent through a
so-called “Patch Embedding” layer, defined as

Epatch = pr (10)

The bias term is omitted since it can be represented in an
augmented matrix W),. With W,,, pixels are linearly mapped
to features, and the attacker calculates the original pixels by
left-multiply its pseudo-inverse.
Optimization-based APRIL. Given the linear system in
Theorem 1, it can also be decomposed into two components
as z and VE,,, based on Eq.(Eq. (8)). Arguably, component
V E,.s indicates the directions of the gradients of position
embeddings. Intuitively, matching the updating direction of
E,s with an direction caused by dummy data can do bene-
fits on the recovery. Therefore, we propose an optimization-
based attack with constraints on the direction of V E,,,.

For expression simicity, we use Vw’ and Vw denote the
gradients of parameter collections for dummy data and real
inputs, respectively. For modelling directional information,
we utilize a cosine similarity between real and dummy po-
sition embedding derivatives as a regularization. The intact
optimization problem is written as

L=Lc+al,
< VEpos, VE,,. > (11

pos

||VEpos|| : ||VE1/7
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where hyperparameter o balances the contributions of two
matching losses. Eventually, we set Eq. (11) as another vari-
ant of our proposed method, the optimization-based APRIL
attack. By enforcing a gradient matching on the learnable
position embedding, it is plaguily easy to break privacy in a
vision Transformer.
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Figure 2: Results for different privacy attacking approaches
on Architecture (A).

Experiments

We carry out experiments on two different architectures,
as illustrated in Fig. 1, architecture (A) has a position em-
bedding layer directly connected to attention module, mak-
ing it possible to perform APRIL-closed-form attack. Ar-
chitecture (B) has the same structure as ViT-Base (Dosovit-
skiy et al. 2020), which is composed of encoders each with a
normalization layer and residual connection before attention
module. For small datasets like CIFAR and MNIST, we re-
fer to the implementation of ViT-CIFAR'. For experiments
on ImageNet, we follow the original ViT design® and archi-
tecture setting.

APRIL as the Gradient Attack

We first apply APRIL attacks on Architecture (A) and com-
pare it with other attacking approaches. As Fig. 2 shows,
closed-form APRIL attack provides a perfect reconstruc-
tion showing nearly no difference to the original input,
which proves the correctness of our theorem. Comparing
optimization-based attacks, for ImageNet reconstructions,
DLG, IG and TAG reconstructions have strong block arti-
facts. In contrast, the proposed APRIL-Optimization attack
behaves prominently better, which reveals quite a lot of sen-
sitive information from the source image.

We further illustrate the optimization procedure of re-
constructions in Fig. 3. An apparent observation is that
our optimization-based APRIL converges consistently faster
than the other two approaches. Besides, APRIL generally
ends up with smoother and cleaner image reconstructions.

Apart from visualization results, we also carry out quan-
titative comparisons on Architecture(B), where we do not
have the condition to use closed-form APRIL attack. The
statistical results from Tab. 1 shows consistent good perfor-
mance of optimization-based APRIL, where we obtain best
results nearly across every task setting.

All experiments shown above demonstrate that the pro-
posed APRIL outperforms all existing privacy attack ap-
proaches in the context of Transformer, thus posing a strong
threat to Vision Transformers.

Uhttps://github.com/omihub777/ViT-CIFAR
*https://github.com/lucidrains/vit-pytorch



Attack MNIST CIFAR-10 ImageNet
MSE SSIM MSE SSIM MSE SSIM
DLG (Zhu, Liu, and Han 2019) | 1.291e-04 £ 2.954e-04 | 0.997 £ 0.003 | 0.017 £ 0.009 | 0.959+0.045 | 1.3284+0.593 | 0.056 £ 0.027
IG (Geiping et al. 2020) 0.043+0.022 0.833+0.076 | 0.1254+0.102 | 0.635+0.165 | 1.671+£0.653 | 0.029+0.013
TAG (Jieren et al. 2021) 3.438e-05 £ 1.322¢-05 | 0.998+0.002 | 0.006 & 0.005 | 0.9654+0.047 | 1.180 +0.473 | 0.062 = 0.026
APRIL 4.796e-05£3.593e-05 | 0.998 £ 0.002 | 0.002-£0.006 | 0.991 £+ 0.027 | 1.092+0.663 | 0.099 £ 0.046

Table 1: Mean and standard deviation for MSE of 500 reconstructions on MNIST, CIFAR-10 and ImageNet validation datasets.

Optimization Iterations
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Figure 3: Visualization of the optimization process for optimization-based APRIL, DLG and TAG. Our approach has faster
convergence speed and does not easily fall into bad local minima, thus yields a prominently better reconstruction result.
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Figure 4: When position embedding is disabled, matching
gradients does not provide semantically meaningful recon-
structions.

APRIL-inspired Defense Strategy

A straightforward way of defending against APRIL is to
switch learnable position embedding to a fixed one. In this
part, we will show that this is a realistic and practical de-
fense, not only for the proposed APRIL, but for all kinds of
attacks.

By using a fixed position embedding, clients will not
share the gradients w.r.t.the input. Therefore, it is impossi-
ble to perform closed-form APRIL attack. We experimented
with optimization-based attacks, and we noticed similar phe-
nomenon as twin data mentioned by (Zhu and Blaschko
2020). After ceasing to share position embedding gradients,
the optimization results in visually anamorphic data which
triggers similar gradients with ground-truth data. The opti-
mization process is shown in Fig. 4. It shows that chang-
ing learnable position embedding to fixed ones can result in
semantically meaningless reconstructions, which preserves
privacy in a highly economic way.

Conclusion

In this paper, we introduce a novel approach Attention
PRIvacy Leakage attack (APRIL) to steal private local
training data from shared gradients of a Transformer. The
attack builds its success on a key finding that learnable posi-
tion embedding is the weak spot for Transformer’s privacy.
Our experiments show the feasibility of both closed-form
and optimization-based APRIL attacks in real cases. We fur-
ther verified the effectiveness of using a fixed position em-
bedding as defense. We hope this work would shed light on
privacy-preserving network architecture design.
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