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Abstract

Generative Adversarial Networks (GANs) are among the
most popular approaches to generate synthetic data, espe-
cially images, for data sharing purposes. Given the vital im-
portance of preserving the privacy of the individual data
points in the original data, GANs are trained utilizing frame-
works with robust privacy guarantees such as Differential Pri-
vacy (DP). However, these approaches remain widely unstud-
ied beyond single performance metrics when presented with
imbalanced datasets. To this end, we systematically compare
GANs trained with the two best-known DP frameworks for
deep learning, DP-SGD, and PATE, in different data imbal-
ance settings from two perspectives – the size of the classes
in the generated synthetic data and their classification perfor-
mance.
Our analyses show that applying PATE, similarly to DP-SGD,
has a disparate effect on the under/over-represented classes
but in a much milder magnitude making it more robust. In-
terestingly, our experiments consistently show that for PATE,
unlike DP-SGD, the privacy-utility trade-off is not monotoni-
cally decreasing but is much smoother and inverted U-shaped,
meaning that adding a small degree of privacy actually helps
generalization. However, we have also identified some set-
tings (e.g., large imbalance) where PATE-GAN completely
fails to learn some subparts of the training data.

1 Introduction
Generative machine learning models, and in particular Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.
2014), have received increasing attention from both re-
searchers (Szpruch et al. 2019; Van Der Schaar and Maxfield
2020) and government organizations (Benedetto et al. 2018;
NIST 2018b,a; NHS England 2021) as a promising solution
to the individual-level data sharing problem. The underly-
ing idea is to train generative models to learn the distribu-
tion of the (real) data, generate new high-quality (synthetic)
samples from the trained model, and release synthetic, rather
than real, data.

However, recent research has shown that generative mod-
els, including GANs, may leak sensitive information about
the training samples through overfitting and memoriza-
tion (Carlini et al. 2019; Webster et al. 2019; Meehan,
Chaudhuri, and Dasgupta 2020) as well as susceptibil-
ity to privacy attacks such as membership inference at-
tacks (Hayes et al. 2019; Chen et al. 2020; Stadler, Oprisanu,

and Troncoso 2020). The state-of-the-art approach to protect
against such vulnerabilities is training the models to satisfy
Differential Privacy (DP) (Dwork et al. 2006; Dwork, Roth
et al. 2014). DP mechanisms protect against attempts to in-
fer the inclusion of any record in the training data by bound-
ing their individual contribution, usually through perturba-
tion. In this paper, we will focus on the two most widely
used DP techniques for training deep learning models – DP-
SGD (Abadi et al. 2016) and PATE (Papernot et al. 2016,
2018).

Even though DP mechanisms guarantee rigorous privacy
protection, they degrade the performance of the model. Fur-
thermore, this accuracy drop is likely to be disparate, affect-
ing the underrepresented subpopulations of the data dispro-
portionately more. For example, in the case of deep learning
classifiers (Bagdasaryan, Poursaeed, and Shmatikov 2019;
Farrand et al. 2020; Suriyakumar et al. 2021) empirically il-
lustrate the disparate degradation caused by DP-SGD. How-
ever, comparisons between DP-SGD and PATE are still rela-
tively unstudied in this light, with (Uniyal et al. 2021) doing
so for classifiers, and more recently, (Ganev, Oprisanu, and
De Cristofaro 2021) demonstrating the said effects in gener-
ative models trained on imbalanced tabular data. To fill this
gap, we set out to examine and compare two GAN models
trained with DP guarantees (DP-WGAN and PATE-GAN)
on imbalanced image data (MNIST) in several imbalance
settings.
Research Question. Does applying DP-SGD and PATE to
GANs lead to similar disparate effects when trained on im-
balanced data, or more specifically, on the minority and ma-
jority classes in terms of size and accuracy of the resulting
synthetic data?
Main Findings. Our experiments could be summarized to:

• Overall, both models exhibit disparity in terms of size
and accuracy, but the effects are much smaller for PATE-
GAN. Furthermore, PATE-GAN offers a much better
privacy-utility trade-off and performs better even for tight
privacy budgets (0.5). We believe this is due to the
teacher-discriminators setup.

• In terms of size, the two models behave in opposite di-
rections with increased privacy – DP-WGAN “evens” the
classes while PATE-GAN increases the imbalance.

• In the presence of a single highly imbalanced class (“8”



reduced to 10% its original size), PATE-GAN fails to
learn the whole subpopulation. This is not the case for
DP-WGAN.

• Applying some degree of privacy actually serves as reg-
ularization to PATE-GAN and helps the performance up
to a point, unlike DP-WGAN, for which any privacy pro-
tection deteriorates the utility.

2 Preliminaries
In this section, we present some background on DP, GANs,
and the two generative models used in our experiments.

2.1 Differential Privacy (DP)
A randomized algorithm A satisfies (ε, δ)-DP if and only
if, for any two adjacent datasets D1 and D2 (differing in a
single record), and all possible outputs S ofA, the following
holds (Dwork et al. 2006; Dwork, Roth et al. 2014):

P [A(D1) ∈ S] ≤ exp (ε) · P [A(D2) ∈ S] + δ

Put simply, one cannot distinguish whether any individual’s
data was part of the input dataset from observing the algo-
rithm’s output. The privacy budget ε denotes the level of in-
distinguishability while δ is a probability of privacy failure.
We focus on the two most widely used DP techniques for
deep learning – DP-SGD (Abadi et al. 2016) and PATE (Pa-
pernot et al. 2016, 2018).

2.2 Generative Adversarial Networks (GANs)
A GAN is a deep learning model consisting of two neural
networks, a generator, and a discriminator. They “compete”
against each other in a min-max “game,” the former pro-
duces synthetic data while the latter distinguishes real from
generated samples until they reach equilibrium.
DP-WGAN. DP-WGAN (Alzantot and Srivastava 2019)
utilizes DP-SGD in place of the standard SGD during train-
ing. DP-SGD guarantees privacy by bounding the individ-
ual gradients (using clipping and perturbation) of the dis-
criminator and relying on the moments accountant method
to track the overall privacy budget.

Furthermore, the model uses the WGAN architecture (Ar-
jovsky, Chintala, and Bottou 2017) to improve stability dur-
ing training.
PATE-GAN. PATE-GAN (Jordon, Yoon, and Van
Der Schaar 2018) modifies the PATE framework for
training GANs. The model replaces the standard single
discriminator with k teacher-discriminators, trained on
disjoint partitions of the real data. In turn, the standard
student model is replaced by a student-discriminator trained
on noisy (real/synthetic) labels predicted by the teachers.
The noisy aggregation is where DP guarantees the privacy
protection. Also, the proposed model eliminates the need
for publicly available data.

Even though both DP-WGAN and PATE-GAN were ini-
tially proposed for tabular data given the remarkable success
of GANs on images, we decided not to adjust their architec-
tures.

3 Experimental Evaluation
In this section, we explain our evaluation methodology and
discuss the experimental findings.

3.1 Evaluation Methodology
We run all of our experiments on MNIST (LeCun, Cortes,
and Burges 2010) and imbalance the class “8” to maintain
consistency with (Papernot et al. 2016; Bagdasaryan, Pour-
saeed, and Shmatikov 2019; Uniyal et al. 2021). First, since
the classes are slightly imbalanced, we get rid of all images
per class exceeding 5,000. Then, we imbalance the dataset,
making “8” the minority/majority class in one of the follow-
ing three settings1:

1. Minority – undersample “8” to 10%/25% its original size
while keeping the other classes balanced.

2. Majority – keep “8” untouched but undersample all other
classes to 10%/25% their sizes.

3. Mixed – turn “8” into minority/majority class by making
it 25% of the largest/smallest class and randomly imbal-
ance all other classes in a uniformly decreasing manner.

We train 5 DP-WGAN and PATE-GAN models for each set-
ting, generate 5 synthetic datasets with a size equal to the
input data (per trained model) and report mean and standard
deviations. We experiment with privacy budgets (ε) of 0.5,
5, 15, and infinity (“non-DP”). We measure the class dis-
tributions in the resulting synthetic datasets as well as class
recall from classifiers (logistic regression similar to (Ganev,
Oprisanu, and De Cristofaro 2021)) trained on the real/syn-
thetic data and tested on put-aside test data. We also re-
port RMSE for sizes and truncated2 RMSE (TRMSE) for
recall weighted by the real sizes in App. B. A summary of
the privacy-utility trade-off for both models in all settings is
plotted in Fig. 5.

Last, for PATE-GAN in all settings, we also experiment
with a different number of teachers – 1, 10, 50, and 100.

We use the same hyperparameters as the original imple-
mentations and set δ = 10−5 for all experiments.

3.2 Minority Class Results
We observe the results in Fig. 1 and Tab. 3. Overall, PATE-
GAN exhibits far better performance for both imbalances
– it preserves the counts even for lower ε budgets, the recall
drop is not so acute, and its standard deviation is much lower.
DP-WGAN recall looks random for ε = 0.5, which means
that the classifiers failed to learn anything, most likely due
to bad quality of the synthetic data.

Looking at the minority class “8,” however, PATE-GAN
fails to generate any digits for imbalance 10%. Surprisingly,
this phenomenon occurs in the “non-DP” case as well. This
could be because the teachers fail to pass samples “8” classi-
fied as real to the student even though when applied to clas-
sification, PATE is more robust under similar imbalance lev-
els (Uniyal et al. 2021).

1we also experiment with balanced settings in App. A
2we do not want to penalize the score if the recall achieved on the synthetic
data is better than on the real



(a) Minority (25%) (b) Minority (10%)

Figure 1: Class size (top) and recall (bottom) of synthetic data generated by DP-WGAN and PATE-GAN trained with different
privacy budgets ε on imbalanced MNIST, where class “8” is decreased to 25% and 10% of its original size.

(a) Majority (25%) (b) Majority (10%)

Figure 2: Class size (top) and recall (bottom) of synthetic data generated by DP-WGAN and PATE-GAN trained with different
privacy budgets ε on imbalanced MNIST, where all classes apart from “8” are decreased to 25% and 10% of their original size.

(a) Mixed, Minority (25%) (b) Mixed, Majority (25%)

Figure 3: Class size (top) and recall (bottom) of synthetic
data, relative to real, generated by DP-WGAN and PATE-
GAN trained with different privacy budgets ε on imbalanced
MNIST, where “8” is minority/majority class accounting to
25% of the largest/smallest class while all other classes are
randomly subsampled in a uniformly decreasing manner.

While expectedly DP-WGAN’s performance monotoni-
cally drops both in terms of size and recall with decreas-
ing ε, PATE-GAN’s performance actually increases when
DP is applied, e.g., ε = 15 and 5 yield better results than
“non-DP” in terms of size for both imbalances and in terms
of recall for imbalance 10%. This is most likely due to the
fact that the teacher-discriminators are exposed to different
subsets of the real data, and as result, do not learn exactly the
same distributions as well as the noise added to their votes,
which further enables generalization.

3.3 Majority Class Results
The results are in Fig. 2 and Tab. 4. For DP-WGAN, there is
a significant drop in recall for all undersampled digits, even
for the “non-DP” case, unlike PATE-GAN, which again has
a very stable behavior.

In terms of size, PATE-GAN generates more imbalanced
datasets by producing more “8s” and uniformly fewer other

digits for all ε budgets but again achieves better results for
ε = 15 than “non-DP.” Unlike the minority class setting, no
classes “disappear” when the imbalance is increased from
25% to 10%. For DP-WGAN, increasing the imbalance
leads to much worse performance, which allows us to spec-
ulate that PATE-GAN needs smaller training data to capture
the underlying distribution and is more robust to imbalance.

Interestingly, some digits suffer a lot more in terms of
recall than others (e.g., “2,” “5,” “9”), which could be ex-
plained because they are visually close to “8” but their sizes
are much smaller.

3.4 Mixed Class Results

The results are displayed in Fig. 3 and Tab. 5. First, we
note that with increased privacy PATE-GAN, again, has
much lower variability/spread in terms of size and a smaller
drop in terms of recall. We also clearly observe the oppos-
ing size effects the two generative models exhibit, similarly
to (Ganev, Oprisanu, and De Cristofaro 2021) – DP-WGAN
makes the classes more uniform, i.e., large classes are re-
duced, and small classes are increased, while PATE-GAN
further enforces the imbalance, large classes become even
bigger.

In terms of recall, the performance of PATE-GAN for all
privacy budgets ε drops slightly in a uniform manner across
all classes and actually exceeds the “non-DP” DP-WGAN.
This observation hints that underrepresented groups do not
suffer unequally under the PATE framework when the im-
balance is not severe. As for DP-WGAN, the size seems to
be an important factor as for ε = 15 smaller classes bear
more considerable drop, which is in agreement with previ-
ous work (Bagdasaryan, Poursaeed, and Shmatikov 2019;
Farrand et al. 2020). Recall for ε = 0.5 looks random.



(a) Min (25%) (b) Min (10%) (c) Maj (25%) (d) Maj (10%) (e) Mix, Min (25%) (f) Mix, Maj (25%)

Figure 4: Class size (top) and recall (bottom) of synthetic data generated by PATE-GAN for ε = 5 in all settings.

Figure 5: Class size RMSE (left) and recall TRMSE (right)
vs ε trade-off of synthetic data generated by DP-WGAN and
PATE-GAN in all settings.

3.5 Number of Teacher-Discriminators Results
Here, we repeat all the experiments for PATE-GAN with
ε = 5 in the three settings (Minority, Majority, Mixed) but
vary the number of teacher-discriminators. The results can
be seen in Fig. 4 and Tab. 6. Overall, we observe that the best
performance is achieved when we set the number of teach-
ers to 10 or 50, with some small exceptions. This behavior is
fully expected and in line with previous work (Jordon, Yoon,
and Van Der Schaar 2018; Uniyal et al. 2021) as having too
few/many teachers could fail to generalize or learn at all.
For instance, we see that when we have a single teacher, the
standard deviation is much higher across the board. One in-
teresting case is the Minority setting with imbalance 10% in
Fig. 4b, where increasing the number of teachers improves
performance, and we get the best results for 100. This still
fails to generate any “8s,” unfortunately.

4 Related Work
There is a rich body of research proposing GANs trained
with DP guarantees in various domains. They are pre-
dominantly GANs variants utilizing modifications of DP-
SGD, e.g., DPGAN (Xie et al. 2018) for images and Elec-
tronic Health Records (EHR), dp-GAN (Zhang, Ji, and
Wang 2018) and DP-CGAN (Torkzadehmahani, Kairouz,
and Paten 2019) for images, dp-GAN-TSCD (Frigerio et al.
2019) for tabular and time series data, etc. In comparison,
there are only a couple of models incorporation PATE into
GANs – PATE-GAN (Jordon, Yoon, and Van Der Schaar
2018) and G-PATE (Long et al. 2021) which ensures DP
for the generator by connecting a student generator with an
ensemble of teacher discriminators. (Fan 2020) provides a
more in-depth survey of various DP GANs.

Researchers have studied the disparate effects of DP
mechanisms in different contexts. (Kuppam et al. 2019; Tran
et al. 2021b) demonstrate that if fund allocations are based

on DP statistics, smaller districts could get more resources
at the expense of larger ones, compared to what they would
receive without DP.

Prior work has also analyzed the disparate effects of
DP-SGD applied to deep neural network classifiers (Bag-
dasaryan, Poursaeed, and Shmatikov 2019; Farrand et al.
2020; Suriyakumar et al. 2021) trained on imbalanced
datasets. They empirically demonstrate that the less repre-
sented subgroups in the dataset that suffer lower accuracy
to start with lose even more utility when DP is applied. For
example, (Farrand et al. 2020) show that even small imbal-
ances and loose privacy guarantees could lead to disparate
impacts. (Uniyal et al. 2021) find that CNNs trained with
PATE suffer from disparate accuracy drops as well, but less
severely than with DP-SGD. There are also papers focusing
on learning DP classifiers with fairness constraints (Jagiel-
ski et al. 2019; Tran, Fioretto, and Van Hentenryck 2021)
and on analyzing the PATE framework from a fairness point
of view (Tran et al. 2021a). While these efforts consider dis-
criminative models, we examine generative ones.

Finally, analyzing the DP disparity on generative mod-
els, (Cheng et al. 2021) show that training classifiers on
balanced DP synthetic images could result in increased ma-
jority subgroup influence and utility degradation. Focusing
on tabular data, (Pereira et al. 2021) look at single-attribute
subgroup fairness and overall classification while (Ganev,
Oprisanu, and De Cristofaro 2021) analyze class as well as
single/multi-attribute subgroup classification parity over a
variety of imbalances and privacy budgets. They find that
the disparate effects of DP could be opposing depending on
the specific generative model and DP mechanism.

Our work is perhaps closest in spirit to (Uniyal et al. 2021;
Ganev, Oprisanu, and De Cristofaro 2021) but we focus on
generative models unlike the former and use image data and
have a more disciplined approach to constructing the class
imbalances, unlike the latter.

5 Conclusion
Through our extensive experiments and analysis, we demon-
strate that applying DP methods to GANs to preserve the
privacy of the data records could lead to disparate effects
on class distributions in the generated synthetic data and the
performance of downstream tasks. Overall, PATE exhibits a
more desirable behavior than DP-SGD, better privacy-utility
trade-off, and while, unfortunately, it still disproportionately
affects the minority subparts of the data, it does so to a less
severe extend.
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Figure 6: Class size (top) and recall (bottom) of synthetic
data generated by DP-WGAN and PATE-GAN trained with
different privacy budgets ε on balanced MNIST.

Figure 7: Class size (left) and recall (right) of synthetic data
generated by PATE-GAN for ε = 5 in balanced settings.

A Balanced Class Results
In this section, we experiment with balanced settings (i.e.,
we do not artificially imbalance the dataset) to serve as a
baseline for the imbalanced settings. The results are dis-
played in Fig. 6 and 7 as well as Tab. 1 and 2. In short,
yet again, PATE-GAN performs better than DP-WGAN –
it manages to keep the class size balance and utility with in-
creased privacy and has a much lower deviation. Unlike all
other settings, even for the “non-DP” case, the size RMSE
on synthetic data produced by PATE-GAN is smaller than
DP-WGAN. Interestingly, even with no imbalance, PATE-
GAN still benefits from applying a small privacy budget

Imbalance Balanced
ε no-DP 15 5 0.5

Size RMSE
DP-WGAN 473.38 487.00 1004.19 1683.49
PATE-GAN 455.78 396.14 490.72 640.70

Recall TRMSE
DP-WGAN 0.1428 0.408 0.6830 0.8173
PATE-GAN 0.1316 0.129 0.1338 0.1729

Table 1: Class size RMSE and recall TRMSE summary cor-
responding to App. A, Fig. 6 and 5.

Imbalance Balanced
ε 5

Size RMSE
1 Teacher 1140.23

10 Teachers 490.72
50 Teachers 425.23

100 Teachers 354.31
Recall TRMSE

1 Teacher 0.2438
10 Teachers 0.1338
50 Teachers 0.1246

100 Teachers 0.1350
Table 2: Class size RMSE and recall TRMSE summary cor-
responding to App. A and Fig. 7.

(e.g., ε = 15). Similarly to 3.3, for PATE-GAN, the classes
that suffer from the biggest accuracy drop with increased
privacy are the ones that are visually similar to each other,
“5,” “8,” “9,” and “2.” These observations allow us to spec-
ulate that the issues and effects observed in Sec. 3 are not
only due to the class imbalance but are magnified by it.

B Tables
In this section, we present summary tables of all experiments
with imbalanced settings in Sec. 3.



Imbalance Minority (25%) Minority (10%)
ε no-DP 15 5 0.5 no-DP 15 5 0.5

Size RMSE
DP-WGAN 433.95 835.85 1594.41 2537.48 303.24 681.29 921.00 1902.04
PATE-GAN 456.18 433.06 419.82 480.61 519.16 489.00 477.81 558.09

Recall TRMSE
DP-WGAN 0.1406 0.4038 0.6667 0.8201 0.1396 0.3913 0.7205 0.8305
PATE-GAN 0.1353 0.1353 0.1363 0.1743 0.1435 0.1412 0.1407 0.1746
Table 3: Class size RMSE and recall TRMSE summary corresponding to Sec. 3.2, Fig. 1 and 5.

Imbalance Majority (25%) Majority (10%)
ε no-DP 15 5 0.5 no-DP 15 5 0.5

Size RMSE
DP-WGAN 469.23 407.40 641.74 2038.68 242.38 499.73 935.04 3048.58
PATE-GAN 476.98 441.95 494.13 393.46 771.72 749.01 777.01 477.82

Recall TRMSE
DP-WGAN 0.2961 0.5702 0.7928 0.8291 0.5114 0.5853 0.7326 0.8129
PATE-GAN 0.1152 0.1128 0.1157 0.1529 0.1242 0.1248 0.1237 0.1537

Table 4: Class size RMSE and recall TRMSE summary corresponding to Sec. 3.3, Fig. 2 and 5.

Imbalance Mixed, Minority (25%) Mixed, Majority (25%)
ε no-DP 15 5 0.5 no-DP 15 5 0.5

Size RMSE
DP-WGAN 267.49 500.89 554.88 1383.69 221.31 630.52 594.04 1554.73
PATE-GAN 294.14 264.34 291.20 369.03 364.75 367.94 348.80 552.61

Recall TRMSE
DP-WGAN 0.1809 0.4283 0.7468 0.8138 0.1731 0.4600 0.7093 0.8447
PATE-GAN 0.1304 0.1297 0.1254 0.1670 0.1264 0.1294 0.1281 0.1674

Table 5: Class size RMSE and recall TRMSE summary corresponding to Sec. 3.4, Fig. 3 and 5.

Imbalance Min (25%) Min (10%) Maj (25%) Maj (10%) Mix, Min (25%) Mix, Maj (25%)
ε 5 5 5 5 5 5

Size RMSE
1 Teacher 1165.98 929.45 307.98 556.47 589.25 728.41

10 Teachers 419.82 477.81 494.13 777.01 291.20 348.80
50 Teachers 475.89 484.62 733.51 994.75 397.74 460.87
100 Teachers 423.28 364.32 677.30 988.51 440.97 410.11

Recall TRMSE
1 Teacher 0.2576 0.2283 0.2268 0.2862 0.2737 0.2673

10 Teachers 0.1363 0.1407 0.1157 0.1237 0.1254 0.1281
50 Teachers 0.1269 0.1411 0.1135 0.1227 0.1216 0.1241
100 Teachers 0.1359 0.1405 0.1187 0.1281 0.1370 0.1300

Table 6: Class size RMSE and recall TRMSE summary corresponding to Sec. 3.5 and Fig. 4.


