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Abstract

Reviewers in peer review are often miscalibrated: they may
be strict, lenient, extreme, moderate, etc. A number of algo-
rithms have previously been proposed to calibrate reviews.
Such attempts of calibration can however leak sensitive in-
formation about which reviewer reviewed which paper. In
this paper, we identify this problem of calibration with pri-
vacy, and provide a foundational building block to address
it. Specifically, we present a theoretical study of this prob-
lem under a simplified-yet-challenging model involving two
reviewers, two papers, and an MAP-computing adversary.
Our main results establish the Pareto frontier of the trade-
off between privacy (preventing the adversary from inferring
reviewer identity) and utility (accepting better papers), and
design explicit computationally-efficient algorithms that we
prove are Pareto optimal.

1 Introduction
It is well known that scores provided by people are fre-
quently miscalibrated. In the application of peer review, re-
viewers may be strict, lenient, extreme, moderate, etc. This
leads to unfairness in peer review, for instance, disadvantag-
ing papers that happen to go to strict reviewers (Siegelman
1991): “the existence of disparate categories of reviewers
creates the potential for unfair treatment of authors. Those
whose papers are sent by chance to assassins/demoters are
at an unfair disadvantage, while zealots/pushovers give au-
thors an unfair advantage.”

A number of algorithms (Flach et al. 2010; Ge, Welling,
and Ghahramani 2013; Roos, Rothe, and Scheuermann
2011; Roos et al. 2012; Paul 1981; Baba and Kashima 2013;
MacKay et al. 2017) are proposed in the literature to address
the problem of miscalibration. There are two key challenges,
however, towards any attempts of calibration using such al-
gorithms:

Challenge #1: The calibration algorithms may leak in-
formation about which reviewer reviewed which paper.
Here is an example showing how a naı̈ve attempt at calibra-
tion can compromise privacy. Consider an adversary trying
to guess the reviewer of a paper between two possibilities –
reviewer X or reviewer Y. The review for the paper is luke-
warm, and for simplicity suppose this is the only review. We
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consider the “open review” model where all submitted pa-
pers, reviews, and final decisions are public (but reviewer
identities are not). Also suppose it is known that reviewer
X is strict but reviewer Y is not. Then the conference will
not accept the paper unless the conference performs a cal-
ibration using this information and the reviewer is X. The
acceptance of the paper will provide the adversary with the
necessary information to infer the reviewer as X.

Challenge #2: The bottleneck of a small number of
samples (reviews) per reviewer. Many conferences have
each reviewer reviewing only a handful papers (typically 1
to 6 papers), as well as have each paper reviewed by a hand-
ful of reviewers. As a consequence, it is often hard to de-
cipher the miscalibration of any reviewer, particularly since
human miscalibration can be quite complex (Brenner, Grif-
fin, and Koehler 2005). Indeed, program chairs of confer-
ences have tried to use some algorithms to calibrate review-
ers’ scores, but have found the outcomes to be unsatisfac-
tory. For instance, John Langford, the program chair of the
ICML 2012 conference says that “We experimented with
reviewer normalization and generally found it significantly
harmful” (Langford 2012).

Our focus on this paper is challenge #1 of privacy. To-
wards challenge # 2, we assume that the conference has ex-
ogenous information about the miscalibration of reviewers,
such as reviewers’ calibration information from other con-
ferences where they have reviewed. (Appendix A presents
simulations illustrating benefits of calibration with exoge-
neous information.) Tackling the problem of privacy in cal-
ibration that we identify is quite challenging in full gener-
ality. In this paper, our goal is to initiate research towards
this grander goal by providing a foundational building block
for it. We consider a simplified–yet highly challenging–
model with two reviewers, two papers, and (exogenously)
known miscalibration functions where an adversary attempts
to guess the reviewer assignment based on maximum a pos-
teriori (MAP) computation. We provide a comprehensive
analysis under this model. Our contributions are summa-
rized as follows:
• We identify the problem of privacy in calibration, and

we initiate a theoretical study with the formulation of a
problem that incorporates various key challenges of the
more general setting.

• We provide explicit computationally-efficient algorithms



for calibration with privacy that optimally trades off the
error of the conference (in terms of accepting the better
paper) and the error of the adversary (in terms of guess-
ing the reviewer).

• We establish the structure of the Pareto optimal curve
between the two aforementioned desiderata. We observe
that interestingly, there is a linear tradeoff between the
two errors up to a certain point, after which the error of
the adversary does not increase even if the conference
adds more randomness in its protocols.

2 Related Work
Peer review is extensively used for evaluating scientific
papers and grant proposals. However, conference peer re-
view also incurs various challenges such as miscalibra-
tion (Flach et al. 2010; Ge, Welling, and Ghahramani 2013;
Roos, Rothe, and Scheuermann 2011; Roos et al. 2012;
Paul 1981; Baba and Kashima 2013; MacKay et al. 2017;
Wang and Shah 2019; Shah et al. 2018), biases (Tomkins,
Zhang, and Heavlin 2017; Manzoor and Shah 2021; Stel-
makh, Shah, and Singh 2019; ?), subjectivity (Lee 2015;
Noothigattu, Shah, and Procaccia 2021; Mahoney 1977),
dishonesty (Balietti, Goldstone, and Helbing 2016; Stel-
makh, Shah, and Singh 2020; Xu et al. 2019; Littman 2021;
Jecmen et al. 2020; Wu et al. 2021; Dhull et al. 2022), and
others. See (Shah 2021) for a survey.

The problem of miscalibration is well recognized in the
literature. A common approach to design calibration algo-
rithms is to assume a certain model of miscalibration, and
under the assumed model, estimate the calibrated scores (or
the model parameters) from the scores given by reviewers.
This line of literature (Flach et al. 2010; Ge, Welling, and
Ghahramani 2013; Roos, Rothe, and Scheuermann 2011;
Roos et al. 2012; Paul 1981; Baba and Kashima 2013;
MacKay et al. 2017) assumes affine models for miscali-
bration: they assume that each paper has some “true” real-
valued quality and that the score provided by any reviewer is
some affine transform (plus noise) of this true quality. In our
formulation (detailed subsequently in Section 3) we also as-
sume papers have true qualities, and a part of our work also
assumes affine miscalibrations.

A second line of literature (Mitliagkas et al. 2011; Ammar
and Shah 2012; Freund et al. 2003) recognizes the problem
of miscalibration, and takes the approach of using only the
ranking of papers induced by the scores given by any in-
dividual reviewer, or alternatively, asking each reviewer to
only provide a ranking of the papers they are reviewing.
Using rankings alone thus gets rid of any miscalibrations,
but on the downside, can lose some information contained
in scores. Moreover, a recent work (Wang and Shah 2019)
showed that under certain settings, scores can yield more
information than rankings even if the miscalibration is ad-
versarial.

Notably, these works consider addressing miscalibration
using data from within the conference at hand, and moreover
do not consider the issue of compromise of privacy.

We assume an “open review” model where all submitted
papers and all reviews are available publicly, but where in-

formation of who reviews which paper is not. Such an open
review model is gaining increasing popularity: see, for in-
stance, openreview.net and scipost.org. This model is fol-
lowed in the ICLR conference as well as other venues. In
a survey (Soergel, Saunders, and McCallum 2013) at the
ICLR 2013 conference, researchers felt that this open review
model leads to benefits of more accountability of authors (in
terms of not submitting below-par papers) as well as review-
ers (in terms of giving high-quality reviews). The publicly
available data has resulted in another benefit: it has yielded
a rich dataset for research on peer review (Xu et al. 2019;
Kang et al. 2018; Manzoor and Shah 2021; Tran et al. 2020;
Bharadhwaj et al. 2020; Yuan, Liu, and Neubig 2021). A
downside of the open review approach is that if a rejected pa-
per is resubmitted elsewhere, the (publicly available) knowl-
edge of previous rejection may bias the reviewer (Stelmakh
et al. 2021).

Our work considers explicitly randomized assignments
and decisions. In practice, the assignments and decision pro-
tocols are typically deterministic (although some variations
naturally arise due to human involvement in various parts
of the peer-review process). The assignment of reviewers
to papers is done by solving a certain optimization prob-
lem (Goldsmith and Sloan 2007; Taylor 2008; Charlin and
Zemel 2013; Garg et al. 2010; Stelmakh, Shah, and Singh
2021; Kobren, Saha, and McCallum 2019) involving simi-
larities computed between each reviewer-paper pair (Mimno
and McCallum 2007; Charlin and Zemel 2013; Fiez, Shah,
and Ratliff 2020; Meir et al. 2020). Decisions are arrived at
after discussions between the reviewers. That said, there are
notable instances where randomization has been explicitly
used in practice in peer review: randomization can help mit-
igate dishonest behavior (Jecmen et al. 2020) and can help
make more fair decisions for borderline papers or grants (Liu
et al. 2020; Chawla 2021). A recent survey of researchers
finds support for randomized decisions (Philipps 2021). Fi-
nally, the algorithms in the theoretical work (Wang and Shah
2019) comparing scores and rankings in the context of mis-
calibration also employ randomization.

Issues of privacy in peer review also arise when releasing
data to researchers. The program chairs of the WSDM 2017
conference performed a remarkable controlled experiment
to test for biases in peer review, and in their paper (Tomkins,
Zhang, and Heavlin 2017) they point out privacy-related
concerns in releasing data: “We would prefer to make avail-
able the raw data used in our study, but after some effort
we have not been able to devise an anonymization scheme
that will simultaneously protect the identities of the parties
involved and allow accurate aggregate statistical analysis.
We are familiar with the literature around privacy preserv-
ing dissemination of data for statistical analysis and feel
that releasing our data is not possible using current state-of-
the-art techniques.” We are aware of two past works which
deal with privacy in peer review (Ding, Shah, and Wang
2020; Jecmen et al. 2020). In particular, both papers con-
sider privacy-preserving release of peer-review data. The pa-
per (Ding, Shah, and Wang 2020) provides an algorithm to
optimize utility when releasing histograms of certain func-
tions of the review scores. The paper (Jecmen et al. 2020)



Notation Meaning
i ∈ {1, 2} Index for paper
j ∈ {1, 2} Index for reviewer
θ∗i ∈ R True quality of paper i
θi ∈ R Estimated quality of paper i
A1 and A2 The two possible assignments
si ∈ R Score received by paper i; S =

[s1, s2]
βj : R→ R Miscalibration function of reviewer j
εj ∈ R Noise of reviewer j
fj : R→ R Marginal probability density function

of score given by reviewer j, that is,
distribution of βj(θ∗) where θ∗ ∼
N(0, 1)

EC ∈ [0, 1] Error of the conference
EA ∈ [0, 1] Error of the adversary

Table 1: Summary of the main notation used in the paper.

uses randomized assignments to guarantee privacy of the
reviewer-paper assignment when data pertaining to similar-
ities between reviewer-paper pairs is released.

Differential privacy (Dwork et al. 2016) is a popular rigor-
ous notion of data privacy. Roughly speaking, an algorithm
is differentially private if its distribution over outputs is sim-
ilar when provided with “neighboring” inputs. In our prob-
lem with two papers and two reviewers, one can consider
neighboring inputs to be those that differ only in the assign-
ment. We provide a tight characterization of the adversary’s
ability to determine which of the two possible assignments is
the true one. Thus, it may be a useful building block towards
more complex private calibration schemes. We note that our
calibration algorithms are related to a form of randomized
response (Warner 1965), the canonical algorithm for local
differential privacy (Warner 1965; Evfimievski, Gehrke, and
Srikant 2003; Kasiviswanathan et al. 2011). Though differ-
ential privacy is not the focus of our work, we further elabo-
rate on this connection in Appendix B.

3 Problem Formulation and Preliminaries
In this section, we present the formal problem specification.
We will introduce some notation in this section, and this no-
tation is also summarized in Table 1.

Papers and reviewers. We consider a setting with two re-
viewers and two papers. Each paper i ∈ {1, 2} has some
latent true quality θ∗i ∈ R. We assume that the qualities θ∗1
and θ∗2 are drawn i.i.d. according to the standard normal dis-
tribution (and hence we have θ∗1 6= θ∗2 with probability 1).

Reviewer assignment. Each reviewer reviews one paper
and each paper is reviewed by one reviewer. There are thus
two possible assignments: we let A1 denote the assignment
of reviewer 1 to paper 1 and reviewer 2 to paper 2, and A2

denote the assignment of reviewer 1 to paper 2 and reviewer
2 to paper 1. We assume that the assignment is chosen uni-
formly at random from these two possibilities. We assume
that the true assignment is known (only) to the conference.

We let A denote a random variable representing the assign-
ment. Finally, in our exposition we will refer to the real-
ization of A as the “true” assignment (and the unrealized
assignment as the “wrong” assignment).

Miscalibration and reviewer scores. For each pa-
per i ∈ {1, 2}, we let si denote the score received
by by paper i. Note that this notation is not indexed
by the reviewer for brevity since each paper receives
exactly one review. For convenience, we define the
vector S = [s1, s2]. Following the popular “open re-
view” model (https://openreview.netOpenReview.net,
https://scipost.orgscipost.org), we assume that the scores s1

and s2 are known publicly.1
Following (Wang and Shah 2019), we assume that each

reviewer j ∈ {1, 2} has a function βj : R → R which
captures their miscalibration. If reviewer j ∈ {1, 2} reviews
paper i ∈ {1, 2}, we assume that the reviewer provides a
score si ∈ R given as:

si = βj(θ
∗
i ) + εj ,

where εj is a zero-mean Gaussian random variable indepen-
dent of everything else. We assume that ε1 and ε2 are iden-
tically distributed. The value of the noise is unknown but
its distribution is publicly known. We call βj the reviewer’s
miscalibration function for reviewer j. We assume that the
functions β1 and β2 are increasing and invertible. In one part
of our work, we further make an assumption that the miscal-
ibration functions are affine, and we detail this subsequently
in the associated section. As discussed previously, our aim is
to use exogenous information about the reviewer miscalibra-
tions in order to mitigate the miscalibration, and to this end,
we assume that the functions β1 and β2 are known publicly.

For any reviewer j, we let fj denote the marginal prob-
ability density function of the final score given by that re-
viewer, that is, fj is the distribution of βj(θ∗) where θ∗ ∼
N(0, 1).

Conference’s error. The goal of the conference is to ac-
cept the paper with the higher true quality argmaxi∈{1,2} θ

∗
i .

Note that even if the noise terms were zero, simply choosing
the paper with higher score (i.e., argmaxi∈{1,2} si) may be
erroneous due to the miscalibration of the reviewers. The
conference can however calibrate the scores, that is, use
the information about the miscalibration functions of the re-
viewers and the knowledge of the assignment to potentially
make a better decision. In our analysis, we will measure the
conference’s performance towards its goal in terms of two
types of errors:

(a) Per-instance error: For any given S =
[s1, s2], the per-instance error of the con-
ference is defined as EC([s1, s2]) :=
Pr(conference accepts lower-quality paper | S =
[s1, s2]).

1Even if the conference operates in a non-open-review setting
where the scores are not public, our guarantees on privacy and
conference’s error continue to hold. However, our algorithm may
not be optimal and the suboptimality may depend on assumptions
about the adversary’s knowledge of the scores.



(b) Average-case error: The average-case error of the confer-
ence is the per-instance error averaged over the distribu-
tion of the scores:

∫
s1

∫
s2
EC([s1, s2])f ′S([s1, s2]) where

f ′S is the p.d.f. of the joint distribution of S = [s1, s2].

In conjunction with the goal of minimizing the error, the
conference must also ensure that information about which
reviewer reviewed which paper is not leaked.

Privacy. We assume that the protocols followed by the
conference are public. A challenge for the conference is that
performing calibration may leak information about the as-
signment. As a simple example, suppose that reviewer 1 is
known to be strict and reviewer 2 is known to be lenient.
Suppose that paper 1 is reviewed by reviewer 1 and paper 2
by reviewer 2. Suppose paper 2 receives a higher score than
paper 1, but the conference decides to accept paper 1 af-
ter performing calibration. This decision leaks information
that paper 2 was reviewed by the lenient reviewer, that is,
by reviewer 2. Note that this issue of compromise of privacy
arises whether or not the reviewer miscalibration functions
are known to the conference.

To formalize the notion of privacy, we assume an adver-
sary in the process. The goal of the adversary is to guess the
assignment. In addition to knowing the scores received by
both papers, the miscalibration functions of both reviewers,
the noise distributions, and the final decision of the confer-
ence, the adversary also knows the calibration strategy used
by the conference to make the decision.

The adversary does not know the assignment, and aims
to guess the assignment. We consider an adversary with no
additional information, in which case, we assume it pre-
dicts the assignment via maximum a posteriori (MAP) esti-
mation. Formally, if the conference decides to accept paper
P ∈ {1, 2}, then the adversary computes:

argmax
A∈{A1,A2}

Pr(A = A | S = [s1, s2], paper P accepted),

whereA is the random variable representing the assignment.
We make no assumptions on the computational power of the
adversary and aim to guarantee privacy assuming they can
compute the aforementioned argmax.

As in the case of the conference’s error, we also measure
the error of the adversary in two ways:

(a) Per-instance error: For any given S =
[s1, s2], the per-instance error of the ad-
versary is defined as EA([s1, s2]) :=
Pr(adversary guesses wrong assignment | S = [s1, s2]).

(b) Average-case error: The average-case error of the adver-
sary is the per-instance error averaged over the distribu-
tion of the scores:

∫
s1

∫
s2
EA([s1, s2])f ′S([s1, s2]) where

f ′S is the p.d.f. of the joint distribution of S = [s1, s2].

Goal. Our goal is to design methods to decide which pa-
per to accept in a manner that simultaneously minimizes the
conference’s error and maximizes the adversary’s error. The
methods will inherently rely on calibrating reviewer deci-
sions to accept the better paper, and hence we sometimes
refer to them as the calibration strategy.

The two aforementioned objectives may conflict with one
another: a decision that reduces the chances of accepting the
lower quality paper via calibration can also leak more infor-
mation about the assignment. In this work, we thus estab-
lish the Pareto frontier of this tradeoff. We define the Pareto
frontier as the set of all points of the (conference’s error, ad-
versary’s error) tradeoff such that the adversary’s error can-
not be increased without increasing the conference’s error.
We call a calibration strategy Pareto optimal if for any given
threshold on conference’s error, it maximizes the adversary’s
error while ensuring that the conference’s error does not ex-
ceed the given threshold.

4 Main Results
In what follows, we present results for two settings: (1) a
noiseless setting, where the noise in the reviewer-provided
scores is zero; and (2) a noisy setting, where the noise in a re-
viewer score has a positive variance. We begin by a few pre-
liminaries which we subsequently use to derive and present
our main results.

4.1 Preliminaries
We now formalize the calibration strategies that a confer-
ence can follow in a general form, and then derive a spe-
cific form that can be used without loss of optimality. Our
subsequent results will then use this form of the calibration
strategies.

At a high level, the calibration strategies introduce a cer-
tain amount of randomness in the acceptance decisions. In
the example in the ‘privacy’ paragraph earlier in this section,
suppose the conference does the calibration, and then tosses
a coin. With probability 0.9, it accepts the paper it thinks is
better and otherwise it accepts the other paper. This random-
ness ensures that an adversary who observes that paper 1 is
accepted cannot be certain that paper 1 was reviewed by re-
viewer 1, due to the possibility that paper 1 was reviewed by
the lenient reviewer 2 but was still accepted due to the ran-
domness. However, due to the randomness introduced, the
conference incurs an error in terms of accepting the paper
which it thought was actually better. There is thus a trade-
off between the conference’s error and the adversary’s error,
and our goal is to design calibration strategies that are opti-
mal with respect to this tradeoff.

Let us now formalize the notion of a calibration strat-
egy. The conference observes the scores S = [s1, s2] and
the assignment A. Given these values, a generic calibra-
tion strategy is specified by a function g : S × A →
[0, 1] — the conference accepts accept paper 1 with prob-
ability g(S,A) and accepts paper 2 otherwise. Note that
the function g is publicly known but its realization is
known only to the conference. For any function g used
by the conference, the conference’s error is then given by
EC(S,A) =

(
(1 − g(S,A1)) Pr(A = A1|θ∗1 > θ∗2 , S) +

(1− g(S,A2)) Pr(A = A2|θ∗1 > θ∗2 , S)
)

Pr(θ∗1 > θ∗2 |S) +(
g(S,A1) Pr(A = A1|θ∗1 < θ∗2 , S) + g(S,A2) Pr(A =

A2|θ∗1 < θ∗2 , S)
)

Pr(θ∗1 < θ∗2 |S).



Having specified this general form of calibration strategy,
we now discuss a specific variant. If one did not care about
the privacy, then the conference’s error can be minimized
via maximum a posteriori (MAP) estimation: given scores
S and the assignment A, the conference accepts paper 1 if
Pr(θ∗1 > θ∗2 |S,A) > 0.5 and accepts paper 2 otherwise
(breaking ties uniformly at random). Now under our sce-
nario also involving privacy, consider the following class of
calibration strategies. The strategy is governed by a function
h : S × A → [0, 1]. Given S = [s1, s2] and the assignment
A:

• With probability h(S,A), the conference executes MAP
estimation under scores S and the (true) assignment A,

• otherwise (with probability 1− h(S,A)), the conference
executes MAP estimation under scores S and the wrong
assignment {A1, A2}\A.

As before, we assume that function h is known publicly but
its realization or the random bits are not.

A calibration strategy is Pareto optimal if any other strat-
egy that incurs a lower conference error must also induce a
lower error of the adversary, and any other strategy that in-
duces a higher error of the adversary must also incur a higher
conference error. The Pareto frontier is the set of all (con-
ference error, adversary error) pairs achieved by Pareto opti-
mal strategies. The following proposition states that without
loss of optimality, one can restrict attention to the class of
strategies specified by functions h.

Proposition 4.1. For any values of error of the conference
and error of the adversary (EC , EA) achieved by a calibra-
tion strategy g, there exists a function h such that under h,
the error of the conference is no larger than EC and the error
of the adversary is no smaller than EA.

The proof of this proposition is available in Appendix C.1.
Hence, without loss of Pareto optimality, any generic cali-
bration strategy g can be replaced with a strategy involving
the miscalibration function h. Thus, in the sequel we restrict
attention to calibration strategies using function h.

4.2 Noiseless Setting
We first study the noiseless setting where the noise in the
reviewer-provided scores is zero, that is, where ε1 = ε2 = 0.
Observe that in this setting the conference can obtain the true
qualities of the papers from the scores by inverting the re-
viewer functions. We first explicitly characterize the Pareto
frontier for per-instance errors of the conference and the
adversary. Based on this characterization, we then design
Pareto optimal strategies for conference calibration with re-
spect to the per-instance error and the average-case error.

Pareto Frontier for Per-Instance Errors In the follow-
ing theorem, we present the main result of this section es-
tablishing the Pareto frontier for per-instance errors in the
noiseless setting.

Theorem 4.2. Consider the peer-review system in the noise-
less setting. The Pareto frontier of (per-instance error of the
conference, per-instance error of the adversary) with scores
S = [s1, s2] is given as follows.

Error of conference

Er
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r o
f a

dv
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0.5
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Legend: Pareto optimal curve in

Part (1) of Theorem 4.2 

Part (2) of Theorem 4.2 

Figure 1: Pareto frontier for per-instance errors in the noise-
less setting.

(1) If s1 ≥ max{β2(β−1
1 (s2)), β1(β−1

2 (s2))} or
s1 ≤ min{β2(β−1

1 (s2)), β1(β−1
2 (s2))}, then

the Pareto frontier consists of a single point
(0, min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2) ).

(2) Otherwise, if min{β2(β−1
1 (s2)), β1(β−1

2 (s2))} < s1 <
max{β2(β−1

1 (s2)), β1(β−1
2 (s2))}, then the Pareto

frontier of conference error and adversary error is a
line segment of slope 1 starting from the origin (0, 0) to(

min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) , min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2)

)
.

The proof of Theorem 4.2 is provided in Appendix C.2.
The Pareto frontier established in Theorem 4.2 is illustrated
in Figure 1.

We now unpack the result of Theorem 4.2, beginning with
part (1). Recall that in this noiseless setting, given scores
S = [s1, s2] and knowing the reviewers’ miscalibration
functions, the conference can estimate the qualities of pa-
pers under each assignment. We use θi ∈ R to denote the
estimated quality of paper i. If the conference estimates the
qualities assuming that A1 was the actual assignment, we
get θ1 = β−1

1 (s1) and θ2 = β−1
2 (s2). If the conference

estimates the qualities assuming that A2 was the actual as-
signment, we get θ1 = β−1

2 (s1) and θ2 = β−1
1 (s2). If

s1 ≥ max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}, then θ1 ≥ θ2 under
both assignments (and hence paper 1 should be accepted).
Similarly, if s1 ≤ min{β2(β−1

1 (s2)), β1(β−1
2 (s2))}, then

θ1 ≤ θ2 under both assignments (and hence paper 2 should
be accepted). Therefore, under the condition of part (1) of
the theorem, the same paper has higher estimated quality un-
der both assignments, and hence that paper will be accepted
irrespective of the function h. Thus, under this condition,
the Pareto optimal curve comprises just a single point where
the conference has zero error, and the adversary obtains no
additional information from the acceptance decision as com-
pared to the scores S = [s1, s2]. The error of the adversary is
min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) when it guesses the assignment

using only the scores and not the decision.
Let us now discuss part (2) of Theorem 4.2. For scores

S = [s1, s2] that do not satisfy the condition in part (1), the
conference would accept different papers when performing
MAP calibration under the two possible assignments. In this



case, the function h does influence the outcomes. The Pareto
frontier includes the origin since the conference can ensure
zero error in this noiseless setting, but this zero-error ac-
ceptance decision will also perfectly reveal the assignment
to the adversary since the zero-error decisions would be
different under the two assignments. Then in the proof, we
find the maximum per-instance error of the adversary given
per-instance error of the conference. We find that the adver-
sary’s error no longer increases if the conference is allowed
an error greater than min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2) . At this
value of the conference’s error, the maximum per-instance
error of the adversary is also min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2) .
We further show in the proof of the theorem that the Pareto
frontier is precisely the line segment joining these two
points. Therefore, the Pareto frontier for scores satisfy the
condition is a line segment from the origin to the point(

min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) , min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2)

)
as shown in Figure 1.

Optimal Calibration Strategy under Per-Instance Errors
In the previous section, we characterized the fundamental
tradeoff between the conference’s per-instance error and the
adversary’s per-instance error through the Pareto frontier. In
this section, we design an explicit calibration strategy that
achieves per-instance errors on the Pareto frontier, and is
thus optimal for per-instance errors.

Since S is a fixed realization in the analysis of per-
instance errors, to simplify the notation we define

q1 = h(S,A1) and q2 = h(S,A2).

Under this notation, q1 is the probability with which the
conference calibrates under the true assignment when the
true assignment is A1, and q2 is the probability with which
the conference calibrates under the true assignment when
the true assignment is A2. Therefore, from Proposition 4.1,
given the maximum allowable error of the conference EC ,
our goal is to find values of q1 and q2 that are Pareto opti-
mal. We present our proposed algorithm for this setting as
Algorithm 1.
Theorem 4.3. The calibration algorithm described in Algo-
rithm 1 ensures the maximum per-instance error of the ad-
versary for any given value of the maximum allowable per-
instance error EC([s1, s2]) for the conference, and is hence
Pareto optimal.

The proof of Theorem 4.3 is presented in Appendix C.3.
If s1 ≥ max{β1(β−1

2 (s2)), β2(β−1
1 (s2))} or s1 ≤

min{β1(β−1
2 (s2)), β2(β−1

1 (s2))}, we are in part (1) of The-
orem 4.2. Under scores that satisfy this condition, the con-
ference is guaranteed to accept the higher-quality paper and
thus has zero error. The error of the adversary is also fixed
because the adversary makes its guess based on the scores
only.

Otherwise, for a Pareto optimal calibration strategy,
the errors of the conference and the adversary should
stay on the Pareto frontier as in Figure 1. When
EC([s1, s2]) ≥ min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2) , the con-
ference should choose q1 and q2 such that its per-

Algorithm 1: Conference calibration with per-
instance error in the noiseless setting
Input: scores S = [s1, s2], maximum allowable per-instance
error of the conference EC([s1, s2])
if s1 ≥ max{β1(β−1

2 (s2)), β2(β−1
1 (s2))} then

accept paper 1
else if s1 ≤ min{β1(β−1

2 (s2)), β2(β−1
1 (s2))} then

accept paper 2
else if EC([s1, s2]) ≥ min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2) then
choose q1, q2 ∈ [0, 1] such that
f1(s1)f2(s2)q1 + f2(s1)f1(s2)q2 =
max {f1(s1)f2(s2), f2(s1)f1(s2)}

else
choose q1, q2 ∈ [0, 1] such that
EC([s1, s2]) = 1− f1(s1)f2(s2)q1+f2(s1)f1(s2)q2

f1(s1)f2(s2)+f2(s1)f1(s2)

end if

instance error is min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) since fur-

ther sacrifice of accuracy cannot increase the per-
instance error of the adversary as indicated by the
Pareto frontier. On the other hand, if EC([s1, s2]) <
min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) , the conference can choose q1

and q2 that yields the maximum allowable per-instance
error. Since EC([s1, s2]) < min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2)

and EC([s1, s2]) = 1 − f1(s1)f2(s2)q1+f2(s1)f1(s2)q2
f1(s1)f2(s2)+f2(s1)f1(s2) , we

can conclude that f1(s1)f2(s2)q1 + f2(s1)f1(s2)q2 >
max {f1(s1)f2(s2), f2(s1)f1(s2)} and the adversary has
the same per-instance error under this condition. Therefore,
in Algorithm 1, the error of the adversary is the same as
the error of the conference and the errors are always on the
Pareto frontier.

Optimal Calibration Strategy under Average-case Error
In the previous section, we designed an optimal strategy un-
der per-instance errors. In this section, we design a calibra-
tion strategy that achieves optimal average-case errors for
the conference with respect to the average-case error of the
adversary. Unlike for per-instance error, we do not have a
closed form expression for average-case error. We present
our proposed algorithm as Algorithm 2. We now present our
main result of this subsection, following which we discuss
more details of the algorithm this result.

Theorem 4.4. The calibration algorithm described in Al-
gorithm 2 ensures the maximum average-case error of the
adversary for any given value of the maximum allowable
average-case error EC for the conference, and is hence
Pareto optimal.

The proof of Theorem 4.4 is provided in Appendix C.4.
In Algorithm 2, running Algorithm 1 with EC([s1, s2]) =

1 is a strategy that yields no error when the same pa-
per has higher estimated quality under both assignments
and otherwise, error of the conference equals error of
the adversary. Moreover, both per-instance error of the
conference and per-instance error of the adversary is



Algorithm 2: Conference calibration with average-
case error in the noiseless setting
Input: maximum allowable average-case error of the
conference EC
Let ζ = error of the conference for adopting Algorithm 1
with EC([s1, s2]) = 1 for all [s1, s2]
if EC > ζ then

the desired conference error is Pareto inefficient and
operate at EC = ζ

else if EC = ζ then
run Algorithm 1 with EC([s1, s2]) = 1

else if EC < ζ then
toss a coin that has probability ECζ of head
if coin toss outcome is head then

run Algorithm 1 with EC([s1, s2]) = 1
else

calibrate under true assignment
end if

end if

min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) . That is, the maximum per-

instance error for the adversary. Thus, this strategy is Pareto
optimal for any score pair and is also Pareto optimal under
its average-error since the error of the adversary is maxi-
mized under such average-error of the conference.

In proof for optimality of Algorithm 2, we take advantage
of the fact that the Pareto frontier is either a point where the
conference has no error or an increasing line with slope 1.
Under this fact, the optimal average-case error of the con-
ference is where the conference has zero error when the ad-
versary guesses the assignment based on the scores only and
has the same error as the adversary otherwise. Therefore, Al-
gorithm 2 makes use of Algorithm 1 with EC([s1, s2]) = 1
and on average, the error of the conference and the adversary
matches the Pareto optimality for the conference.

4.3 Noisy Setting

We now study the noisy setting. We consider both review-
ers’ miscalibration functions β1 and β2 to be affine and both
reviewers’ noises ε1 and ε2 to be Gaussian. Furthermore, the
distributions of the noise are the same for both reviewers
with mean zero and some known variance σ2. Formally, we
assume:

β1(θ∗) = a1θ
∗ + b1, β2(θ∗) = a2θ

∗ + b2,

ε1 ∼ N(0, σ2), and ε2 ∼ N(0, σ2).

As we will see below, the presence of noise makes the anal-
ysis much more complex, even when we assume affine mis-
calibration, as compared to the noiseless setting.

Pareto Frontier for Per-Instance Errors We begin by es-
tablishing the Pareto frontier for per-instance errors in the
noisy case. Let Φ denote the cumulative distribution func-
tion of the standard normal distribution. Also define notation

Φ1 and Φ2 as:

Φ1 = Φ

(
a2(a2

1 + σ2)(s2 − b2)− a1(a2
2 + σ2)(s1 − b1)√

σ2(a2
1 + a2

2 + 2σ2)(a2
1 + σ2)(a2

2 + σ2)

)
(4.1a)

Φ2 = Φ

(
a1(a2

2 + σ2)(s2 − b1)− a2(a2
1 + σ2)(s1 − b2)√

σ2(a2
1 + a2

2 + 2σ2)(a2
1 + σ2)(a2

2 + σ2)

)
.

(4.1b)

Theorem 4.5. Consider the peer-review system in the noisy
setting. The Pareto frontier of (per-instance error of the con-
ference, per-instance error of the adversary) with scores
S = [s1, s2] is as follows.

(1) If s1 ≥ max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
or s1 ≤ min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
,

then the Pareto frontier consists of a single point.
Specifically, when s1 ≥
max

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
,

the Pareto frontier of conference er-
ror and adversary error is the point(
f1(s1)f2(s2)Φ1+f2(s1)f1(s2)Φ2

f1(s1)f2(s2)+f2(s1)f1(s2) , min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2)

)
.

And similarly, when s1 ≤
min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
,

the Pareto frontier is the point(
f1(s1)f2(s2)(1−Φ1)+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2) , min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2)

)
.

(2) If min
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
<

s1 < max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
,

then the Pareto frontier is an increasing line.
The proof of Theorem 4.5 is provided in Appendix C.5.

We now unpack this result and specify precisely the Pareto
frontier in both parts of the theorem.

Given scores S = [s1, s2] and knowing the reviewers’
miscalibration functions, the conference can estimate the
qualities of papers under each assignment. Under assign-
ment A1, we have Pr(θ∗1 > θ∗2 |A = A1, S = [s1, s2]) =
1−Φ1. And under assignmentA2, we have Pr(θ∗1 > θ∗2 |A =
A2, S = [s1, s2]) = 1− Φ2.

Let us now consider part (1) of Theorem 4.5. If the con-
dition specified in the statement of the theorem is satisfied,
then we know that either (Φ1 ≤ 1

2 ,Φ2 ≤ 1
2 ) in which case

paper 1 has a higher estimated quality under either assign-
ment, or (Φ1 ≥ 1

2 ,Φ2 ≥ 1
2 ) in which paper 2 has a higher

estimated quality under either assignment. Thus, if the con-
dition in part (1) is met, the same paper has higher estimated
quality under both assignments and hence the decision does
not depend on h. Thus, for such pair of scores, the Pareto
optimal situation is where the conference has minimum er-
ror and the adversary guesses the assignment based on the
scores alone.

Let us now move to part (2) of Theorem 4.5, and consider
parameters that satisfy the condition stated therein. Under
this condition, the conference would accept different papers



Error of the 
conference

Er
ro

r o
f t

he
 a

dv
er

sa
ry

0.5

%1 ,1 %2 ,2
%1 ,1 %2 ,2 + %2 ,1 %1(,2)

1 2

:
𝑓! 𝑠! 𝑓" 𝑠" Φ! + 𝑓" 𝑠! 𝑓! 𝑠" (1 − Φ")

𝑓! 𝑠! 𝑓" 𝑠" + 𝑓" 𝑠! 𝑓!(𝑠")

:
𝑓! 𝑠! 𝑓" 𝑠" (Φ!+2Φ" − 1) + 𝑓" 𝑠! 𝑓! 𝑠" (1 − Φ")

𝑓! 𝑠! 𝑓" 𝑠" + 𝑓" 𝑠! 𝑓!(𝑠")

1

2

Figure 2: A Pareto frontier in the noisy setting of part (2) of
Theorem 4.5 in the case that f1(s1)f2(s2) < f2(s1)f1(s2)
and Φ1 <

1
2 < Φ2 with 0 < Φ2− 1

2 <
1
2−Φ1. The notations

Φ1 and Φ2 are defined in (4.1).

by calibrating under different assignments, and the function
h needs to be carefully designed. We study the Pareto fron-
tier for scores in the range.

We consider a specific case where f1(s1)f2(s2) <
f2(s1)f1(s2), Φ1 < 1

2 and Φ2 > 1
2 with 0 < Φ2 − 1

2 <
1
2 − Φ1. All other cases can be derived in a similar fash-
ion to the proof in Appendix C.5. The Pareto frontier with
these assumptions are shown in Figure 2. We first find the
maximum per-instance error of the adversary given per-
instance error of the conference. We find that the adver-
sary’s error no longer increases if the conference increase its
error larger than f1(s1)f2(s2)(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2)

in this case. The maximum per-instance error of the ad-
versary is f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) . Therefore, the Pareto
frontier for scores satisfy the condition is an in-
creasing line from

(
f1(s1)f2(s2)Φ1+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2) , 0
)

to the point
(
f1(s1)f2(s2)(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2) ,

f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2)

)
.

We show the Pareto frontier in the case described above in
Figure 2. In all other cases, the shape of the Pareto frontier
is the same as Figure 2 but has different coordinates. The re-
lationship between f1(s1)f2(s2) and f2(s1)f1(s2) combin-
ing with the values of Φ1 and Φ2 and their distance to 1

2 , we
have eight different combinations of these values. In all eight
cases, the Pareto frontier contains either a single point or an
increasing line depending on the scores. Moreover, the max-

imum error of the adversary is min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2)

in all cases.

Optimal Calibration Strategy under Per-Instance Errors
In the previous section, we characterized the fundamental
tradeoff between the conference’s per-instance error and the
adversary’s per-instance error through the Pareto frontier. In
this section, we design a calibration strategy that achieves
per-instance errors on the Pareto frontier, meaning that the
strategy is optimal under per-instance errors.

Since S is a fixed realization in the analysis of per-
instance errors, to simplify the notation we define (similar
to Section 4.2):

q1 = h(S,A1) and q2 = h(S,A2).

Under this notation, given the maximum allowable error of
the conference EC , our goal is to find values of q1 and q2 that
maximize the error of the adversary EA. We continue to use
the notations Φ1 and Φ2 introduced in 4.1.

We present our proposed algorithm as Algorithm 3.
Theorem 4.6. The calibration algorithm described in Algo-
rithm 3 ensures the maximum per-instance error of the ad-
versary for any given value of the maximum allowable per-
instance error EC([s1, s2]) for the conference, and is hence
Pareto optimal.

The proof of Theorem 4.6 is provided in Appendix C.6.
For a moment, consider the case of f1(s1)f2(s2) <
f2(s1)f1(s2) and Φ1 <

1
2 < Φ2 with 0 < Φ2− 1

2 <
1
2−Φ1,

for a Pareto optimal calibration strategy, the error of the con-
ference and the adversary should stay on the Pareto frontier
as in Figure 2. If the required error of the conference is less
than f1(s1)f2(s2)Φ1+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2) , then due to the noise,
there is no feasible calibration strategy that satisfies this re-
quirement. Otherwise, the error of the conference and the
error of the adversary adhere to the Pareto frontier.

Algorithm 3 follows directly from the Pareto frontier
established in Theorem 4.5. The calibration probabilities
q1 and q2 are chosen such that the error of the conference
and the error of the adversary lie on the Pareto frontier.
The first two cases of Algorithm 3 correspond to part (1)
of Theorem 4.5 where the same paper has higher estimated
quality under both assignments. In the noisy case, there is a
minimum value for the per-instance error of the conference.
Therefore, in the third case of Algorithm 3, when the
maximum allowable per-instance error of the conference
is too small, the conference cannot achieve such error. If
EC([s1, s2]) ≥ f1(s1)f2(s2)(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2) ,
the error of the conference should be
f1(s1)f2(s2)(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2) to stay Pareto
optimal since further sacrifice of accuracy cannot increase
error of the adversary. And for the rest of the per-instance
error of the conference, we choose q1 and q2 such that the
errors of the conference and the adversary stay on the Pareto
frontier in Figure 2.

5 Discussion
Our work is only a starting point towards addressing the im-
portant problem of calibration with privacy in its full gener-



Algorithm 3: Conference calibration with per-
instance error in the noisy setting
Input: scores S = [s1, s2], maximum allowable per-instance
error of the conference EC([s1, s2])
if
s1 > max

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
then

accept paper 1
else if
s1 < min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
then

accept paper 2
else if EC([s1, s2]) < f1(s1)f2(s2)Φ1+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2) then
error of the conference cannot be achieved

else if
EC([s1, s2]) ≥ f1(s1)f2(s2)(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2)

then
choose q1 = 1, q2 = (f2(s1)f1(s2)−f1(s1)f2(s2))(1−2Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2)

else
choose
q1 = 1, q2 = EC([s1,s2])·(f1(s1)f2(s2)+f2(s1)f1(s2))

(1−2Φ2)f2(s1)f1(s2) −
f1(s1)f2(s2)(1−Φ1)+f2(s1)f1(s2)Φ2+(2Φ1−1)f1(s1)f2(s2)

(1−2Φ2)f2(s1)f1(s2)

end if

ality. Several challenges need to be addressed in future work
in order to design practical algorithms with guarantees for
calibration and privacy. There are open problems pertaining
to relaxations of assumptions made in this paper such as that
of two reviewers and papers, homogeneity and knowledge of
the noise variance, etc. An important open problem pertains
to challenge #2 discussed in the introduction, in conjunction
with challenge #1. Instead of assuming precise exogenous
knowledge of the reviewers’ miscalibration functions, con-
sider having some access to data from other conferences.
Then how can one obtain and use meaningful estimates of
reviewer miscalibrations from past conferences while guar-
anteeing privacy of the current as well as past conferences
(“federated learning for calibration”)? In any of these en-
deavors, one may aim to uncover precise fundamental limits
and optimal algorithms, or perhaps design algorithms that
are readily applicable in practice with some basic theoreti-
cal guarantees.
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Appendices

A Simulations: Correcting miscalibration
with and without exogeneous information

In the introduction section in the main text, we discussed
two ways of reducing miscalibration: one where only the
current conferences’ data is used and another where miscal-
ibration parameters of reviewers are obtained exogenously
(e.g., from previous conferences). In this section, we con-
duct a simulation-based study to understand the performance
of these approaches: What is the reduction in error if cor-
recting for miscalibration? What if the reviewer-calibration
parameters are known?

Our main results in the main text was focused on privacy
and considered a setting with two reviewers and two papers.
In this section we consider a larger number of reviewers and
papers. The methods we simulate in this more general set-
ting do not consider privacy.

We first describe the simulation setting, and then dis-
cuss the results. The code for the simulations is available
here: https://github.com/wenxind/calibration-with-privacy-
in-peer-review.

Conference review setup: We consider 100 reviewers
and 100 papers. We assign reviewers to papers uniformly
at random with 3 reviewers per paper and 3 papers per re-
viewer.

Miscalibration model: We assume each reviewer has a
linear miscalibration function: the miscalibration function
hj of reviewer j is given by hj(θ

∗) = ajθ
∗ + bj where

θ∗ is the true quality of the paper being reviewed. For every
paper i, its true quality θ∗i is drawn from a Gaussian distri-
bution with mean 0 and variance 1 independent of all else.
The scalars aj in the reviewers’ miscalibration functions are
i.i.d. exponential random variables with rate 1. The biases bj
are i.i.d. Gaussian random variables with mean 0 and vari-
ance 0.5. The score given by any reviewer j to any paper i is
then given as θ∗i is ajθ∗i + bj + εij where εij is a Gaussian
random variable with mean 0, whose variance is varied in
the plots.

Calibration methods: We consider the following three
methods to calibrate the decisions.

• No calibration: The score for each paper is the mean
score of the 3 review scores.

• Within-conference calibration: For each reviewer, we
compute the mean score and standard deviation of the
3 review scores given by the reviewer and normalize the
3 scores by subtracting mean and dividing standard devi-
ation. Then the score for each paper is the mean score of
the 3 normalized review scores.

• Calibration with known parameters: We assume that the
miscalibration parameters of the reviewers are known
(exogeneously). Then we estimate the quality of each pa-
per via maximum likelihood estimation as follows. For
any paper i, let Ri denote the set of reviewers for pa-
per i. Then the estimate of the score for any paper i is
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Figure 3: A simulation of the review process where the re-
viewers are miscalibrated.

∑
j∈Ri

aj(sji−bj)∑
j∈Ri

a2j
where sji denotes the score given by

reviewer j to paper i.
For each paper, we then take a mean of the calibrated scores
across all its reviewers. The papers are then ranked accord-
ing to these mean scores; we call this the estimated ranking.

Error metrics: We consider two ways of measuring the
error between the ranking of the papers in terms of their true
scores and the ranking of the papers in terms of their esti-
mated scores.
• Kendall tau distance: Given two rankings of the papers,

the Kendall tau distance between the two ranking is
number of discordant pairs

total number of pairs .

• Messy middle error: Given two rankings of the 100
papers, suppose that the conference wishes to accept the
top 25 papers. Then we consider papers 11-40 as those
that are marginal accepts, and we measure the error as
the fraction of these papers which are (erroneously)
rejected. In other words, the messy middle error equals
number of papers whose true ranking is between 11–40 that are wrongly accepted/rejected

30 .
Results: The results of the simulations are shown in Fig-



ure 3. Each point depicts the mean from 100 iterations of
these simulations. The error bars are too small to be visi-
ble. We see that correcting for miscalibration even without
access to the parameters can lead to significant reduction in
the error as compared to not correcting for the miscalibra-
tion. Furthermore, if the parameters were known (e.g., from
other conferences) then it can lead to multi-fold further re-
ductions in the error.

B Connection to Local Differential Privacy
In this section, we discuss the connections between our algo-
rithm and differential privacy (DP). We recall the definition
of DP:
Definition B.1 ((Dwork et al. 2016)). An algorithm M :
Xn → Y is ε-differentially private (DP) if, for all X,X ′ ∈
Xn which differ in one entry (often called neighboring
databases) and S ⊆ Y , we have that

Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S].

Roughly speaking, a procedure involving n users is ε-
locally differentially private if each user applies an ε-DP al-
gorithm to their single datapoint and shares only the result
with other users or a data curator. The most familiar LDP
algorithm is (binary) randomized response.
Definition B.2. Binary randomized response with parame-
ter γ is an algorithm M : {0, 1} → {0, 1}, which, given
input x, outputs x with probability 1

1+γ , and outputs 1 − x
with probability γ

1+γ .
The following claim is immediate from the definition of

differential privacy and randomized response.
Proposition B.3. Binary randomized response with param-
eter eε is ε-DP.

We now relate randomized response to the algorithms pro-
posed in our setting. The private information for our cali-
bration problem consists solely of the reviewer assignment
A, which takes one of two different values (i.e., reviewer
1 is assigned to paper 1 and reviewer 2 is assigned to pa-
per 2, or vice versa). These two reviewer assignments can
be considered to be “neighboring” datasets, as mentioned in
Definition B.1. All other information (paper scores S and re-
viewer’s miscalibration functions) are assumed to be public.

As argued in Proposition 4.1, it is without loss of opti-
mality to solely consider strategies of the form h, in which
the conference calibrates according to the true assignment
with probability h(S,A) and according to the false assign-
ment otherwise. This can be rephrased into the language of
randomized response by considering the assignment A to be
the input bit to binary randomized response, in which it is
preserved with probability h(S,A) (in the language of Defi-
nition B.2, h(S,A) = 1

1+γ ) and flipped otherwise, and then
the conference calibrates with the resulting assignment.

We caution that this connection does not directly imply
that our algorithms are differentially private. This is because
the probability h(S,A) is selected in a data-dependent way,
whereas differential privacy requires it to be data indepen-
dent. Nevertheless, our work provides tight guarantees on
the probability that an MAP adversary can determine the
true assignment.

C Appendix: Proofs
In the appendix, we present complete proofs of the results
claimed in the main text.

C.1 Proof of Proposition 4.1
The most generic calibration strategy can be represented
using a function g such that for any given score and as-
signment, g outputs a probability for accepting paper 1. In
other words, the conference accepts paper 1 with probability
g(S,A) and accepts paper 2 with probability 1 − g(S,A).
We propose a calibration strategy using function h instead
of g, where h outputs a probability that the conference cali-
brates under the true assignment by accepting the paper with
higher estimated quality under the true assignment.

Calibrating using the calibration strategy of function h
differs from calibrating using the calibration strategy of
function g only when the same paper has higher estimated
quality under both assignments by the MAP. Since other-
wise, when calibrating under the true assignment and cal-
ibrating assuming the wrong assignment lead to accepting
different papers, either paper can have arbitrary non-zero
probability of being accepted (their probabilities sum to 1)
by adjusting the output of h(S,A1) and h(S,A2). Then it is
the same calibration strategy as using function g.

Note that the adversary makes its guess using the MAP
argmax{A=A1orA=A2} Pr(A = A|D = P, S = [s1, s2])
where D is the random variable for the decision made by the
conference (acceptance of paper) and P is the paper being
accepted. By expanding the probability expression, we have
that

argmax
A∈{A1,A2}

Pr(A = A|D = P, S = [s1, s2])

= argmax
A∈{A1,A2}

Pr(A = A,D = P |S = [s1, s2])

Pr(D = P |S = [s1, s2])

= argmax
A∈{A1,A2}

Pr(D = P |A = A,S = [s1, s2]) Pr(A = A|S = [s1, s2])

Pr(D = P |S = [s1, s2])

= argmax
A∈{A1,A2}

Pr(D = P |A = A,S = [s1, s2]) Pr(A = A|S = [s1, s2]).

If the same paper has higher estimated quality under both
assignments, and the conference accepts the believed higher-
quality paper, then the adversary guesses the assignment
based on the scores only. Because the adversary knows the
calibration strategy used by the conference, if P is the pa-
per that has higher quality under both assignments, then
Pr(D = P |A = A,S = [s1, s2]) = 1 for both A = A1

and A = A2. Therefore, the MAP used by the adversary
simplifies to argmaxA=A1orA=A2

Pr(A = A|S = [s1, s2]).
In this case, the conference does not have extra privacy leak-
age by accepting P since the adversary is making its guess
based on the information that is already public (the scores).
In addition, if the conference has non-zero probability of
accepting the other paper, its utility decreases by accepting
the lower-quality paper. Even if the conference accepts the
lower-quality paper, the error of the adversary remains un-
changed as it can use the scores to guess the assignment
without being affected by the conference decision. Thus,



there is no need for the conference to have non-zero prob-
ability for accepting the paper that has lower-quality under
both assignments.

In conclusion, calibrating using the calibration strategy of
function h instead of the calibration strategy of function g
does not reduce the optimally of the conference. Therefore,
we consider the calibration strategy with function h in our
analysis.

C.2 Proof of Theorem 4.2

To find the Pareto frontier of per-instance error of the ad-
versary against per-instance error of the conference, we first
derive expressions for per-instance error of the conference
and the adversary. We find a fixed expression for the error
of the conference and calculate the maximum per-instance
error of the adversary in different cases. We then analyze the
relation between the errors and complete plots for maximum
per-instance error of the adversary for any per-instance error
of conference. Finally, we derive the Pareto frontier from the
plots.

In the noiseless setting, the conference uses the inverse
functions of reviewers’ miscalibration functions and the
scores to exactly compute the quality of the papers. If the
conference estimates the qualities assuming that A1 was the
actual assignment, we get θ1 = β−1

1 (s1) and θ2 = β−1
2 (s2).

If the conference estimates the qualities assuming that A2

was the actual assignment, we get θ1 = β−1
2 (s1) and

θ2 = β−1
1 (s2). If s1 > max{β2(β−1

1 (s2)), β1(β−1
2 (s2))},

then θ1 > θ2 under both assignments (and hence
paper 1 should be accepted). Similarly, if s1 <
min{β2(β−1

1 (s2)), β1(β−1
2 (s2))}, then θ1 < θ2 under both

assignments and hence paper 2 should be accepted. There-
fore, when s1 > max{β2(β−1

1 (s2)), β1(β−1
2 (s2))} or s1 <

min{β2(β−1
1 (s2)), β1(β−1

2 (s2))}, which is a subset of part
(1) of Theorem 4.2, the same paper has higher estimated
quality under both assignments, and hence that paper will be
accepted irrespective of the function h. Thus, under this con-
dition, the Pareto optimal curve comprises just a single point
where the conference has zero error, and the adversary ob-
tains no additional information from the acceptance decision
as compared to the scores S = [s1, s2]. The error of the ad-
versary is min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2) when it guesses the
assignment using only the scores and not the decision.

For the rest scores, the conference uses function h to de-
cide acceptance of paper. Since S is a fixed realization in the
analysis, we simplify the calibration strategy for the confer-
ence as

q1 = h(S,A1)

q2 = h(S,A2).

We now consider the rest scores in part (1) of the theo-
rem. If s1 = β2(β−1

1 (s2)), the conference accepts each pa-
per uniform at random if calibrating under A1 and accepts
paper 1 if calibrating under A2. Since paper 1 has higher
or equal quality than paper 2, the conference only has error
when paper 2 is accepted and A = A2.

Pr(conference accepts lower-quality paper|S = [s1, s2])

= Pr(conference accepts lower-quality paper|S = [s1, s2], D = P1)

· Pr(D = P1|S = [s1, s2])

+ Pr(conference accepts lower-quality paper|S = [s1, s2], D = P2)

· Pr(D = P2|S = [s1, s2])

= Pr(conference accepts lower-quality paper|S = [s1, s2], D = P2)

· Pr(D = P2|S = [s1, s2]).

Given that the conference accepts P2, the probability of
the conference making error is the probability Pr(A =
A2|S = [s1, s2]).

Pr(D = P2|S = [s1, s2])

= Pr(D = P2|S = [s1, s2],A = A1) Pr(A = A1|S = [s1, s2])

+ Pr(D = P2|S = [s1, s2],A = A2) Pr(A = A2|S = [s1, s2])

=
1

2
q1 Pr(A = A1|S = [s1, s2]) +

1

2
(1− q2) Pr(A = A2|S = [s1, s2]).

For the adversary, if paper 1 is accepted, it gains no infor-
mation on the assignment other than the scores so its error is
min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) . Otherwise, it guesses A = A1

and its error is Pr(A = A2|S = [s1, s2]). Note that error of
the adversary does not exceed min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2)

since in the worst case for the adversary, it guesses the as-
signment solely based on the scores and ignore the confer-
ence decision.

Pr(adversary guesses assignment wrong|S = [s1, s2])

= Pr(adversary guesses assignment wrong|S = [s1, s2], D = P1)

· Pr(D = P1|S = [s1, s2])

+ Pr(adversary guesses assignment wrong|S = [s1, s2], D = P2)

· Pr(D = P2|S = [s1, s2])

=
min{f1(s1)f2(s2), f2(s1)f1(s2)}
f1(s1)f2(s2) + f2(s1)f1(s2)

·
(

(1− 1

2
q1) Pr(A = A1|S = [s1, s2])

+ (
1

2
+

1

2
q2) Pr(A = A2|S = [s1, s2])

)
+ Pr(A = A2|S = [s1, s2])

·
(1

2
q1 Pr(A = A1|S = [s1, s2])

+
1

2
(1− q2) Pr(A = A2|S = [s1, s2])

)
Therefore, we can minimize the error of the conference

to 0 by choosing q1 = 0 and q2 = 1, which results in
the conference always accepts paper 1. Then error of the
adversary is min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2) , which is maxi-
mized. Further increase of error of the conference cannot in-
crease error of the adversary. So the Pareto optimal point is
(0, min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2) ). The same argument works
when s1 = β1(β−1

2 (s2)).



In the noiseless setting where
min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} < s1 <

max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}, which is part (2) of
Theorem 4.2, we first find the maximum per-instance
error of the adversary given per-instance error of the
conference in this range. We will show the proof with
the assumptions that β2(β−1

1 (s2)) > β1(β−1
2 (s2)) and

f1(s1)f2(s2) > f2(s1)f1(s2). The proof follows the same
procedure for other values of β2(β−1

1 (s2)), β1(β−1
2 (s2)),

f1(s1)f2(s2), and f2(s1)f1(s2).

When the scores satisfy β1(β−1
2 (s2)) < s1 <

β2(β−1
1 (s2)), the conference always accepts the higher-

quality paper if it calibrates under the true assignment, and
the conference always accepts the lower-quality paper if it
calibrates assuming the wrong assignment. But the confer-
ence can calibrate assuming the wrong assignment for the
purpose of misleading the adversary. We use A to denote
the random variable for the assignment, D to denote the
random variable for the conference decision and S is the
scores. In addition, we use C to denote the calibration sta-
tus. If the conference calibrates under the true assignment
then C = T . Otherwise, C = F .

Therefore, the error of the conference is computed as

Pr(conference accepts lower-quality paper|S = [s1, s2])

= Pr(C = F |S = [s1, s2])

= Pr(C = F,A = A1|S = [s1, s2])

+ Pr(C = F,A = A2|S = [s1, s2])

= Pr(C = F |A = A1, S = [s1, s2]) Pr(A = A1|S = [s1, s2])

+ Pr(C = F |A = A2, S = [s1, s2])P (A = A2|S = [s1, s2])

=(1− q1) · f1(s1)f2(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)

+ (1− q2) · f2(s1)f1(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)

=1− f1(s1)f2(s2)q1 + f2(s1)f1(s2)q2

f1(s1)f2(s2) + f2(s1)f1(s2)
.

The adversary uses MAP to guess the assignment. If the
two assignments have the same a posteriori probability, then
the adversary makes a random guess between the assign-
ments where either assignment has probability 1

2 of being
guessed. When making a guess, the adversary observes the
scores and the conference decision. So the adversary finds
argmax{A=A1orA=A2} Pr(A = A|D = P, S = [s1, s2])
where P is the paper being accepted. Following Section C.1,
the adversary finds

argmax
A∈{A1,A2}

Pr(A = A|D = P, S = [s1, s2])

= argmax
A∈{A1,A2}

Pr(D = P |A = A,S = [s1, s2]) Pr(A = A|S = [s1, s2])

= argmax
A∈{A1,A2}(

Pr(D = P |A = A,S = [s1, s2],C = T )

· Pr(C = T |A = A,S = [s1, s2])

+ Pr(D = P |A = A,S = [s1, s2]),C = F )

· Pr(C = F |A = A,S = [s1, s2])
)

· Pr(A = A|S = [s1, s2])

= argmax
A∈{A1,A2}(

Pr(D = P |A = A,S = [s1, s2],C = T )

· h(S = [s1, s2],A = A)

+ Pr(D = P |A = A,S = [s1, s2],C = F )

· (1− h(S = [s1, s2],A = A))
)
· Pr(A = A|S = [s1, s2])

Under our assumptions of β2(β−1
1 (s2)) > β1(β−1

2 (s2))
and f1(s1)f2(s2) > f2(s1)f1(s2), paper 1 has higher es-
timated quality under A1 and paper 2 has higher estimated
quality underA2. Suppose paper 1 is accepted, i.e., D = P1.
The value of the above expression under A = A1 is

(Pr(D = P1|A = A1, S = [s1, s2],C = T )

· h(S = [s1, s2],A = A1)

+ Pr(D = P1|A = A1, S = [s1, s2],C = F )

· (1− h(S = [s1, s2],A = A1))) · Pr(A = A1|S = [s1, s2])

=(q1 + 0) · f1(s1)f2(s2)

=f1(s1)f2(s2)q1.

On the other hand, suppose paper 1 is accepted, the value of
the above expression under A = A2 is

(Pr(D = P1|A = A2, S = [s1, s2],C = T )

· h(S = [s1, s2],A = A2)

+ Pr(D = P1|A = A2, S = [s1, s2],C = F )

· (1− h(S = [s1, s2],A = A2))) · Pr(A = A2|S = [s1, s2])

=(0 + (1− q2)) · f1(s1)f2(s2)

=f2(s1)f1(s2)(1− q2).

Therefore, when the conference accepts paper 1, if
f1(s1)f2(s2)q1 > f2(s1)f1(s2)(1− q2), then the adversary
guesses A = A1. Otherwise, it guesses A = A2 except that
when f1(s1)f2(s2)q1 = f2(s1)f1(s2)(1 − q2), it makes a
random guess assigning probability 1

2 to each assignment.
Similarly, if paper 2 is accepted, the adversary compares
f1(s1)f2(s2)(1 − q1) and f2(s1)f1(s2)q2 where it guesses
A = A1 when f1(s1)f2(s2)(1 − q1) > f2(s1)f1(s2)q2.
There are 2 papers and 2 possible assignments, so we have
4 scenarios combining decisions and assignments.



1. Scenario 1: A = A1 and D = P1

This scenario happens with probability Pr(A =

A1,D = P1|S = [s1, s2]) = f1(s1)f2(s2)q1
f1(s1)f2(s2)+f2(s1)f1(s2) .

In this scenario, the adversary guesses wrong if
f1(s1)f2(s2)q1 < f2(s1)f1(s2)(1− q2).

2. Scenario 2: A = A1 and D = P2

This scenario happens with probability Pr(A =

A1,D = P2|S = [s1, s2]) = f1(s1)f2(s2)(1−q1)
f1(s1)f2(s2)+f2(s1)f1(s2) .

In this scenario, the adversary guesses wrong if
f1(s1)f2(s2)(1− q1) < f2(s1)f1(s2)q2.

3. Scenario 3: A = A2 and D = P1

This scenario happens with probability Pr(A =

A1,D = P1|S = [s1, s2]) = f2(s1)f1(s2)(1−q2)
f1(s1)f2(s2)+f2(s1)f1(s2) .

In this scenario, the adversary guesses wrong if
f1(s1)f2(s2)q1 > f2(s1)f1(s2)(1− q2).

4. Scenario 4: A = A2 and D = P2

This scenario happens with probability Pr(A =

A1,D = P2|S = [s1, s2]) = f2(s1)f1(s2)q2
f1(s1)f2(s2)+f2(s1)f1(s2) .

In this scenario, the adversary guesses wrong if
f1(s1)f2(s2)(1− q1) > f2(s1)f1(s2)q2.

To compute the error of the adversary, we need to
compare f1(s1)f2(s2) and f2(s1)f1(s2). So as in our
assumptions, f1(s1)f2(s2) > f2(s1)f1(s2). From the
above 4 scenarios, 2 of them compare f1(s1)f2(s2)q1 with
f2(s1)f1(s2)(1−q2) and 2 of them compare f1(s1)f2(s2)q1

with f1(s1)f2(s2) − f2(s1)f1(s2)q2. To analyze the er-
ror of the adversary, we consider 5 cases of the value
of f1(s1)f2(s2)q1 separated by f2(s1)f1(s2)(1 − q2) and
f1(s1)f2(s2) − f2(s1)f1(s2)q2. For each case, we re-
fer to the 4 scenarios of (A,D) above. Also note that
EC([s1, s2]) = 1− f1(s1)f2(s2)q1+f2(s1)f1(s2)q2

f1(s1)f2(s2)+f2(s1)f1(s2) as computed
above.
• If f1(s1)f2(s2)q1 < f2(s1)f1(s2)− f2(s1)f1(s2)q2, the

adversary guesses wrong in scenarios 1 and 4.
Error of the adversary EA([s1, s2]) is
f1(s1)f2(s2)q1+f2(s1)f1(s2)q2
f1(s1)f2(s2)+f2(s1)f1(s2) . Since EC([s1, s2]) =

1 − f1(s1)f2(s2)q1+f2(s1)f1(s2)q2
f1(s1)f2(s2)+f2(s1)f1(s2) , the relation be-

tween error of the adversary and error of the con-
ference is EA([s1, s2]) = 1 − EC([s1, s2]). For
0 ≤ f1(s1)f2(s2)q1 < f2(s1)f1(s2) − f2(s1)f1(s2)q2,
EC([s1, s2]) ∈ ( f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) , 1].

• If f1(s1)f2(s2)q1 = f2(s1)f1(s2)− f2(s1)f1(s2)q2, the
adversary makes random guess in scenarios 1 and 3 and
guesses wrong in scenario 4.
Error of the adversary EA([s1, s2]) is

f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) and error of the conference

EC([s1, s2]) is f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) .

• If f2(s1)f1(s2) − f2(s1)f1(s2)q2 < f1(s1)f2(s2)q1 <
f1(s1)f2(s2) − f2(s1)f1(s2)q2, the adversary guesses
wrong in scenarios 3 and 4.
Error of the the adversary EA([s1, s2]) is

f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) , which is constant. In this

case, since error of the conference EC([s1, s2]) =

1 − f1(s1)f2(s2)q1+f2(s1)f1(s2)q2
f1(s1)f2(s2)+f2(s1)f1(s2) , we can find that

EC([s1, s2]) ranges from ( f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) to

f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) ).

• If f1(s1)f2(s2)q1 = f1(s1)f2(s2)− f2(s1)f1(s2)q2, the
adversary makes random guess in scenarios 2 and 4 and
guesses wrong in scenario 3.
Error of the adversary EA([s1, s2]) is

f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) and error of the conference

EC([s1, s2]) is also f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) .

• If f1(s1)f2(s2)q1 > f1(s1)f2(s2)− f2(s1)f1(s2)q2, the
adversary guesses wrong in scenarios 2 and 3.
Error of the adversary EA([s1, s2]) is 1 −
f1(s1)f2(s2)q1+f2(s1)f1(s2)q2
f1(s1)f2(s2)+f2(s1)f1(s2) , which is the same as

the error of the conference EC([s1, s2]). The rela-
tion between error of the adversary and error of
the conference is EA([s1, s2]) = EC([s1, s2]). For
1 ≥ f1(s1)f2(s2)q1 > f1(s1)f2(s2) − f2(s1)f1(s2)q2,
EC([s1, s2]) ∈ [0, f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) ).

Therefore, the relation between error of the adversary and
error of the conference when f1(s1)f2(s2) > f2(s1)f1(s2)
is of the shape of a trapezoid in [0, 1] with the three line
segments of the slope +1, 0, and -1 as in Figure 4a. Note
that the relation between the per-instance errors does not
change with the relation between values of f1(s1)f2(s2) and
f2(s1)f1(s2). So Figure 4a is the relation between the errors
when u > v. Similarly, Figure 4b is the relation between the
errors when u ≤ v.

From Figure 4 we see that the conference should keep
its per-instance error less than min{u,v}

u+v to stay optimal. Be-

cause if the error of the conference is greater than min{u,v}
u+v ,

increasing its error does not increase the error of the adver-
sary and thus is not optimal. Thus, the Pareto frontier of per-
instance error of the adversary against error of the confer-
ence is the first line segment with slope 1 in both Figure 4a
and Figure 4b when min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} <

s1 < max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}.

C.3 Proof of Theorem 4.3
We prove that Algorithm 1 is optimal for each instance of
scores S = [s1, s2] with desired error of the conference
EC([s1, s2]) in the noiseless setting.

From Theorem 4.2 we know that if a paper has higher
estimated quality under both assignments, the conference
should accept the paper. This is the optimal calibration strat-
egy for the conference.

Otherwise when min{β2(β−1
1 (s2)), β1(β−1

2 (s2))} <
s1 < max{β2(β−1

1 (s2)), β1(β−1
2 (s2))}, we use the Pareto

frontier in Theorem 4.2 to explain the optimality of our algo-
rithm. Suppose f1(s1)f2(s2) ≤ f2(s1)f1(s2), then the end-
point on the Pareto frontier has both error of the conference
and error of the adversary being f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) . If

EC([s1, s2]) < f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) , we maximize the
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(a) Maximum per-instance error of the adversary given per-instance
error of the conference when u > v.
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(b) Maximum per-instance error of the adversary given per-instance
error of the conference when u ≤ v

Figure 4: Relation between error of the adversary and er-
ror of the conference with u = f1(s1)f2(s2) and v =
f2(s1)f1(s2).

error of the adversary by operating on the Pareto frontier.
If EC([s1, s2]) ≥ f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) , we operate at the
endpoint where error of the adversary is maximum and error
of the conference is no larger than the desired EC([s1, s2]).
The endpoint is the point with minimum error of the confer-
ence such that error of the adversary is maximum. Therefore,
it is optimal for the conference.

Similarly, if f1(s1)f2(s2) > f2(s1)f1(s2), the algorithm
is also optimal by maximizing error of the adversary under
desired error of the conference following the Pareto frontier.
Algorithm 1 follows the procedure by choosing the corre-
sponding q1 and q2 for each point on the Pareto frontier and
thus is optimal for the conference.

C.4 Proof of Theorem 4.4
Algorithm 1 with EC([s1, s2]) = 1 operates
on the endpoint of the Pareto frontier when
min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} < s1 <

max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}. We use ζ to denote
the error of running Algorithm 1 with EC([s1, s2]) = 1 for
all [s1, s2]. Then we have Algorithm 2 that has a maximum
allowable average-case error of the conference EC as input.

If EC ≥ ζ, we operate at EC = ζ by running Algorithm 1
with EC([s1, s2]) = 1. From Theorem 4.3 we know that Al-
gorithm 1 with EC([s1, s2]) = 1 is Pareto optimal for all
score pairs such that the error of the adversary is maximized

and no smaller error of the conference can achieve the same
privacy guarantee. Increasing the error of the conference will
not increase the error of the adversary. Thus, it is Pareto op-
timal for the allowable average-case error of the conference.

If EC < ζ, the coin toss ensures that the average-case er-
ror of the conference is ζ · ECζ + 0 · (1 − ECζ ) = EC . If
we use η to denote the average-case error of the adversary
when the conference always calibrates under the true as-
signment, then the average-case error of the adversary when
the conference runs Algorithm 1 with EC([s1, s2]) = 1
is ζ + η. Because when the conference always calibrates
under the true assignment, the adversary only makes er-
ror when s1 ≤ min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} or s1 ≥

max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}. And if the conference
adopts Algorithm 1 with EC([s1, s2]) = 1, the adversary
has error η when s1 ≤ min{β2(β−1

1 (s2)), β1(β−1
2 (s2))}

or s1 ≥ max{β2(β−1
1 (s2)), β1(β−1

2 (s2))} and has er-
ror ζ when min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} < s1 <

max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}. Therefore, the average-
case error of the adversary is (η+ζ)· ECζ +η·(1− ECζ ) = EC+

η. From Theorem 4.3 we know that when the conference has
per-instance error EC , the maximum per-instance error of the
adversary is EC if min{β2(β−1

1 (s2)), β1(β−1
2 (s2))} < s1 <

max{β2(β−1
1 (s2)), β1(β−1

2 (s2))}. In addition, a Pareto op-
timal strategy when s1 ≤ min{β2(β−1

1 (s2)), β1(β−1
2 (s2))}

or s1 ≥ max{β2(β−1
1 (s2)), β1(β−1

2 (s2))} has error of the
adversary being η and error of the conference being 0.
Therefore, for the average-case error of the conference be-
ing EC , the average-case error of the adversary is no larger
than EC + η. Therefore Algorithm 2 is Pareto optimal.

C.5 Proof of Theorem 4.5
To find the Pareto frontier of per-instance error of the adver-
sary against per-instance error of the conference in the noisy
setting, we first find the maximum per-instance error of the
adversary given per-instance error of the conference in this
range.

Prior to computing the errors, we compute the posterior
distribution of the quality of the papers given the assign-
ment and scores. We have θ∗1 |{S = [s1, s2],A = A1} ∼
N
(
a1(s1−b1)
a21+σ2 , σ2

a21+σ2

)
and θ∗1 |{S = [s1, s2],A = A2} ∼

N
(
a2(s1−b2)
a22+σ2 , σ2

a22+σ2

)
. Similarly, θ∗2 |{S = [s1, s2],A =

A1} ∼ N
(
a2(s2−b2)
a22+σ2 , σ2

a22+σ2

)
and θ∗2 |{S = [s1, s2],A =

A2} ∼ N
(
a1(s2−b1)
a21+σ2 , σ2

a21+σ2

)
. We show calculation for one

of the posterior distribution. Note that in continuous space,
the probability is taken as the density of the corresponding
distribution.

Pr(θ∗1 = t|S = [s1, s2],A = A1)

=
Pr(S = [s1, s2]|θ∗1 = t,A = A1) · Pr(θ∗1 = t|A = A1)

Pr(S = [s1, s2]|A = A1)



Then we separately compute each term in the equation
above. Note that s1|{θ∗1 = t,A = A1} ∼ N(a1t + b1, σ

2)
and s1|A = A1 ∼ N(b1, a

2
1 + σ2). Since s2 is indepen-

dent of θ∗1 given that A = A1, s2|{θ∗1 = t,A = A1} and
s2|A = A1 have the same distribution. In addition, θ∗ and
A are independent.

Pr(S = [s1, s2]|θ∗1 = t,A = A1)

= Pr(S[1] = s1|θ∗1 = t,A = A1) · Pr(S[2] = s2|A = A1)

=
1√
2πσ

e
− 1

2

(
s1−(a1t+b1)

σ

)2

· Pr(S[2] = s2|A = A1)

Pr(θ∗2 = t|A = A1)

=
1√
2π
e−

1
2 t

2

Pr(S = [s1, s2]|A = A1)

= Pr(S[1] = s1|A = A1) · Pr(S[2] = s2|A = A1)

=
1

√
2π
√
a2

1 + σ2
e
− 1

2

(
s1−b1√
a21+σ2

)2

· Pr(S[2] = s2|A = A1)

Therefore, combining the terms we get

Pr(θ∗1 = t|S = [s1, s2],A = A1)

=

1√
2πσ

e
− 1

2

(
s1−(a1t+b1)

σ

)2

· Pr(S[2] = s2|A = A1) · 1√
2π
e−

1
2 t

2

1√
2π
√
a21+σ2

e
− 1

2

(
s1−b1√
a21+σ2

)2

· Pr(S[2] = s2|A = A1)

=
1√
2π

√
a2

1 + σ2

σ2
e
− 1

2

((
s1−(a1t+b1)

σ

)2
+t2−

(
s1−b1√
a21+σ2

)2)

=
1√
2π

√
a2

1 + σ2

σ2
e
− 1

2

(
t− a1(s1−b1)

a21+σ2

)2

· a
2
1+σ2

σ2 .

The other three posteriors are computed in a similar fashion.

Given the posterior distribution of the qualities, we can
compute the posterior probability that one paper has higher
quality than the other.

Pr(θ∗1 > θ∗2 |A = A1, S = [s1, s2])

= Pr

(
N

(
a1(s1 − b1)

a2
1 + σ2

,
σ2

a2
1 + σ2

)

> N

(
a2(s2 − b2)

a2
2 + σ2

,
σ2

a2
2 + σ2

))

= Pr

(
N

(
a1(s1 − b1)

a2
1 + σ2

− a2(s2 − b2)

a2
2 + σ2

,
σ2

a2
1 + σ2

+
σ2

a2
2 + σ2

)
> 0

)
= Pr

(
a1(s1 − b1)

a2
1 + σ2

− a2(s2 − b2)

a2
2 + σ2

+

√
σ2

a2
1 + σ2

+
σ2

a2
2 + σ2

N(0, 1) > 0

)

= Pr

(
N(0, 1) >

a2(a2
1 + σ2)(s2 − b2)− a1(a2

2 + σ2)(s1 − b1)√
σ2(a2

1 + a2
2 + 2σ2)(a2

1 + σ2)(a2
2 + σ2)

)

=1− Φ

(
a2(a2

1 + σ2)(s2 − b2)− a1(a2
2 + σ2)(s1 − b1)√

σ2(a2
1 + a2

2 + 2σ2)(a2
1 + σ2)(a2

2 + σ2)

)
We use Φ to denote the cumulative distribution function of
standard Gaussian distribution. Similarly, we can compute
that

Pr(θ∗1 ≤ θ∗2 |A = A1, S = [s1, s2])

=Φ

(
a2(a2

1 + σ2)(s2 − b2)− a1(a2
2 + σ2)(s1 − b1)√

σ2(a2
1 + a2

2 + 2σ2)(a2
1 + σ2)(a2

2 + σ2)

)
Pr(θ∗1 > θ∗2 |A = A2, S = [s1, s2])

=1− Φ

(
a1(a2

2 + σ2)(s2 − b1)− a2(a2
1 + σ2)(s1 − b2)√

σ2(a2
1 + a2

2 + 2σ2)(a2
1 + σ2)(a2

2 + σ2)

)
Pr(θ∗1 ≤ θ∗2 |A = A2, S = [s1, s2])

=Φ

(
a1(a2

2 + σ2)(s2 − b1)− a2(a2
1 + σ2)(s1 − b2)√

σ2(a2
1 + a2

2 + 2σ2)(a2
1 + σ2)(a2

2 + σ2)

)
For simplicity, let Φ1 =

Φ

(
a2(a21+σ2)(s2−b2)−a1(a22+σ2)(s1−b1)√

σ2(a21+a22+2σ2)(a21+σ2)(a22+σ2)

)
and Φ2 =

Φ

(
a1(a22+σ2)(s2−b1)−a2(a21+σ2)(s1−b2)√

σ2(a21+a22+2σ2)(a21+σ2)(a22+σ2)

)
. Since the confer-

ence does calibration using the posterior probabilities, the
values of Φ1 and Φ2 determines the conference decision.
By Proposition 4.1, we know that the conference should
accept the paper with higher estimated quality under both
assignments without any calibration. Therefore, if Φ1 and
Φ2 are both less than 1

2 , the conference should accept paper
1. Similarly, if Φ1 and Φ2 are both greater than 1

2 , the
conference should accept paper 2. Otherwise, when Φ1 − 1

2

and Φ2 − 1
2 have different signs, the conference should

do calibration with function h. As before, since S is a
fixed realization in the analysis, we simplify the calibration



strategy for the conference as

q1 = h(S,A1)

q2 = h(S,A2).

We first consider part (1) of the theorem. If s1 >

max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
,

which is when Φ1 ≤ 1
2 and Φ2 ≤ 1

2 , the conference accepts
paper 1 and the adversary guesses the assignment based
on the scores only. Then the error of the conference is the
probability that paper 2 has higher quality.

Pr(θ∗1 < θ∗2 |S = [s1, s2])

= Pr(θ∗1 < θ∗2 |A = A1, S = [s1, s2])

· Pr(A = A1|S = [s1, s2])

+ Pr(θ∗1 < θ∗2 |A = A2, S = [s1, s2])

· Pr(A = A2|S = [s1, s2])

=Φ1 ·
f1(s1)f2(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)

+ Φ2 ·
f2(s1)f1(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)

Similarly, if s1 < min
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+b2

}
, which is when Φ1 ≥ 1

2 and Φ2 ≥ 1
2 ,

the conference accepts paper 2 and the error of the confer-
ence is the probability that paper 1 has higher quality.

Pr(θ∗1 > θ∗2 |S = [s1, s2])

= Pr(θ∗1 > θ∗2 |A = A1, S = [s1, s2])

· Pr(A = A1|S = [s1, s2])

+ Pr(θ∗1 > θ∗2 |A = A2, S = [s1, s2])

· Pr(A = A2|S = [s1, s2])

=(1− Φ1) · f1(s1)f2(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)

+ (1− Φ2) · f2(s1)f1(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)

In both cases, error of the adversary is
min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) , which is the error when

the adversary guesses the assignment based on scores only.
We now consider the rest scores in

part (1) of the theorem. If s1 =

max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
,

without loss of generality, we assume
max

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
=

β2(β−1
1 (s2)), then the conference accepts each paper

uniform at random if calibrating under A1 and accepts
paper 1 if calibrating under A2. Since paper 1 has higher
or equal quality than paper 2, the conference only has error
when paper 2 is accepted and A = A2.

Pr(conference accepts lower-quality paper|S = [s1, s2])

= Pr(conference accepts lower-quality paper|S = [s1, s2], D = P1)

· Pr(D = P1|S = [s1, s2])

+ Pr(conference accepts lower-quality paper|S = [s1, s2], D = P2)

· Pr(D = P2|S = [s1, s2])

= Pr(θ∗1 < θ∗2 |S = [s1, s2]) Pr(D = P1|S = [s1, s2])

+ Pr(θ∗1 > θ∗2 |S = [s1, s2]) Pr(D = P2|S = [s1, s2]).

Note that in this case, Pr(θ∗1 < θ∗2 |S = [s1, s2]) <
Pr(θ∗1 > θ∗2 |S = [s1, s2]). By similar calculation as in Ap-
pendix C.3, we have

Pr(D = P1|S = [s1, s2])

=
1

2
(1− q1) Pr(A = A1|S = [s1, s2]) +

1

2
q2 Pr(A = A2|S = [s1, s2])

Pr(D = P2|S = [s1, s2])

=
1

2
q1 Pr(A = A1|S = [s1, s2]) +

1

2
(1− q2) Pr(A = A2|S = [s1, s2]).

Error of the conference is then a convex combination of
Pr(θ∗1 < θ∗2 |S = [s1, s2]) and Pr(θ∗1 > θ∗2 |S = [s1, s2]) and
is minimized when the weight of Pr(θ∗1 > θ∗2 |S = [s1, s2])
is 0.

For the adversary, if paper 1 is accepted, it gains no infor-
mation on the assignment other than the scores so its error is
min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) . Otherwise, it guesses A = A1

and its error is Pr(A = A2|S = [s1, s2]). Note that error of
the adversary does not exceed min{f1(s1)f2(s2),f2(s1)f1(s2)}

f1(s1)f2(s2)+f2(s1)f1(s2)

since in the worst case for the adversary, it guesses the as-
signment solely based on the scores and ignore the confer-
ence decision.

Pr(adversary guesses assignment wrong|S = [s1, s2])

= Pr(adversary guesses assignment wrong|S = [s1, s2], D = P1)

· Pr(D = P1|S = [s1, s2])

+ Pr(adversary guesses assignment wrong|S = [s1, s2], D = P2)

· Pr(D = P2|S = [s1, s2])

=
min{f1(s1)f2(s2), f2(s1)f1(s2)}
f1(s1)f2(s2) + f2(s1)f1(s2)

·
(

(1− 1

2
q1) Pr(A = A1|S = [s1, s2])

+ (
1

2
+

1

2
q2) Pr(A = A2|S = [s1, s2])

)
+ Pr(A = A2|S = [s1, s2])

·
(1

2
q1 Pr(A = A1|S = [s1, s2])

+
1

2
(1− q2) Pr(A = A2|S = [s1, s2])

)
Therefore, we can minimize the error of the conference

to 0 by choosing q1 = 0 and q2 = 1, which results in
the conference always accepts paper 1. Then error of



the adversary is min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) , which is

maximized. Further increase of error of the conference
cannot increase error of the adversary. So the Pareto
optimal point is (Φ1 · f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) + Φ2 ·
f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) ,
min{f1(s1)f2(s2),f2(s1)f1(s2)}
f1(s1)f2(s2)+f2(s1)f1(s2) ).

The same argument follows when s1 =

min
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
.

We then look at part (2) of the the-
orem where the scores lie in the region
min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
<

s1 < max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
.

We will then show the proof with the assumptions that
f1(s1)f2(s2) < f2(s1)f1(s2) and Φ1 = 1

2 − ϕ1 and
Φ2 = 1

2 + ϕ2 with 0 < ϕ2 < ϕ1. The analysis is
of the same procedure for different assumptions on the
values of f1(s1)f2(s2), f2(s1)f1(s2), Φ1 and Φ2 with
Φ1 − 1

2 and Φ2 − 1
2 having different signs. The nota-

tions are of the same meaning as in Section C.3. In the
noisy setting, even if the conference calibrates under the
true assignment, there is still possibility to accept the
lower-quality paper due to the noise in the scores given by
the reviewers. Note that with the assumptions and when
min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
<

s1 < max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
,

the conference accepts paper 1 if calibrates under A1 and
accepts paper 2 if calibrates under A2 by the assumptions
on Φ1 and Φ2. So we have

Pr(conference accepts lower-quality paper|S = [s1, s2])

= Pr(conference accepts P1, θ
∗
1 < θ∗2 |S = [s1, s2])

+ Pr(conference accepts P2, θ
∗
1 > θ∗2 |S = [s1, s2])

= Pr(conference accepts P1|θ∗1 < θ∗2 , S = [s1, s2])

· Pr(θ∗1 < θ∗2 |S = [s1, s2])

+ Pr(conference accepts P2|θ∗1 > θ∗2 , S = [s1, s2])

· Pr(θ∗1 > θ∗2 |S = [s1, s2]).

We then expand each of the two terms.

Pr(conference accepts P1|θ∗1 < θ∗2 , S = [s1, s2])

= Pr(conference accepts P1,A = A1|θ∗1 < θ∗2 , S = [s1, s2])

+ Pr(conference accepts P1,A = A2|θ∗1 < θ∗2 , S = [s1, s2])

= Pr(conference accepts P1|A = A1, θ
∗
1 < θ∗2 , S = [s1, s2])

· P (A = A1|θ∗1 < θ∗2 , S = [s1, s2])

+ Pr(conference accepts P1|A = A2, θ
∗
1 < θ∗2 , S = [s1, s2])

· Pr(A = A2|θ∗1 < θ∗2 , S = [s1, s2])

= Pr(C = T |A = A1, θ
∗
1 < θ∗2 , S = [s1, s2])

· Pr(A = A1|θ∗1 < θ∗2 , S = [s1, s2])

+ Pr(C = F |A = A2, θ
∗
1 < θ∗2 , S = [s1, s2])

· Pr(A = A2|θ∗1 < θ∗2 , S = [s1, s2])

=q1 Pr(A = A1|θ∗1 < θ∗2 , S = [s1, s2])

+ (1− q2) Pr(A = A2|θ∗1 < θ∗2 , S = [s1, s2])

=q1
Pr(A = A1, θ

∗
1 < θ∗2 |S = [s1, s2])

Pr(θ∗1 < θ∗2 |S = [s1, s2])

+ (1− q2)
Pr(A = A2, θ

∗
1 < θ∗2 |S = [s1, s2])

Pr(θ∗1 < θ∗2 |S = [s1, s2])

=q1

· Pr(θ∗1 < θ∗2 |A = A1, S = [s1, s2]) · Pr(A = A1|S = [s1, s2])

Pr(θ∗1 < θ∗2 |S = [s1, s2])

+ (1− q2)

· Pr(θ∗1 < θ∗2 |A = A2, S = [s1, s2]) · Pr(A = A2|S = [s1, s2])

Pr(θ∗1 < θ∗2 |S = [s1, s2])
.

Similarly,

Pr(conference accepts P2|θ∗1 > θ∗2 , S = [s1, s2])

=(1− q1)

· Pr(θ∗1 > θ∗2 |A = A1, S = [s1, s2]) · Pr(A = A1|S = [s1, s2])

Pr(θ∗1 > θ∗2 |S = [s1, s2])

+ q2

· Pr(θ∗1 > θ∗2 |A = A2, S = [s1, s2]) · Pr(A = A2|S = [s1, s2])

Pr(θ∗1 > θ∗2 |S = [s1, s2])
.

Therefore, we have

Pr(conference accepts lower-quality paper|S = [s1, s2])

=q1 Pr(θ∗1 < θ∗2 |A = A1, S = [s1, s2])

· Pr(A = A1|S = [s1, s2])

+ (1− q2) Pr(θ∗1 < θ∗2 |A = A2, S = [s1, s2])

· Pr(A = A2|S = [s1, s2])

+ (1− q1) Pr(θ∗1 > θ∗2 |A = A1, S = [s1, s2])

· Pr(A = A1|S = [s1, s2])

+ q2 Pr(θ∗1 > θ∗2 |A = A2, S = [s1, s2])

· Pr(A = A2|S = [s1, s2])

=
f1(s1)f2(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)
(q1Φ1 + (1− q1)(1− Φ1))

+
f2(s1)f1(s2)

f1(s1)f2(s2) + f2(s1)f1(s2)
· ((1− q2)Φ2 + q2(1− Φ2)).



Under the assumptions that Φ1 = 1
2−ϕ1 and Φ2 = 1

2 +ϕ2

where 0 < ϕ2 < ϕ1 and f1(s1)f2(s2) < f2(s1)f1(s2), we
analyze the per-instance error of the adversary similar to the
procedure in Section C.2. There are 4 scenarios combining
the decision and the true assignment.

1. Scenario 1: A = A1 and D = P1

This scenario happens with probability Pr(A =

A1,D = P1|S = [s1, s2]) = f1(s1)f2(s2)q1
f1(s1)f2(s2)+f2(s1)f1(s2) .

In this scenario, the adversary guesses wrong if
q1f1(s1)f2(s2) < (1− q2)f2(s1)f1(s2).

2. Scenario 2: A = A1 and D = P2

This scenario happens with probability Pr(A =

A1,D = P1|S = [s1, s2]) = f1(s1)f2(s2)(1−q1)
f1(s1)f2(s2)+f2(s1)f1(s2) .

In this scenario, the adversary guesses wrong if (1 −
q1)f1(s1)f2(s2) < q2f2(s1)f1(s2).

3. Scenario 3: A = A2 and D = P1

This scenario happens with probability Pr(A =

A1,D = P1|S = [s1, s2]) = f2(s1)f1(s2)(1−q2)
f1(s1)f2(s2)+f2(s1)f1(s2) .

In this scenario, the adversary guesses wrong if
q1f1(s1)f2(s2) > (1− q2)f2(s1)f1(s2).

4. Scenario 4: A = A2 and D = P2

This scenario happens with probability Pr(A =

A1,D = P1|S = [s1, s2]) = f2(s1)f1(s2)q2
f1(s1)f2(s2)+f2(s1)f1(s2) .

In this scenario, the adversary guesses wrong if (1 −
q1)f1(s1)f2(s2) > q2f2(s1)f1(s2).

To compute the error of the adversary, we need to
compare f1(s1)f2(s2) and f2(s1)f1(s2). So we sup-
pose f1(s1)f2(s2) < f2(s1)f1(s2). From the above
4 scenarios, 2 of them compare f1(s1)f2(s2)q1 with
f2(s1)f1(s2)(1−q2) and 2 of them compare f1(s1)f2(s2)q1

with f1(s1)f2(s2) − f2(s1)f1(s2)q2. To analyze the er-
ror of the adversary, we consider 5 cases of the value
of f1(s1)f2(s2)q1 separated by f2(s1)f1(s2)(1 − q2) and
f1(s1)f2(s2) − f2(s1)f1(s2)q2. We refer to the 4 scenarios
of (A,D) above.

• If q1f1(s1)f2(s2) < f1(s1)f2(s2)− q2f2(s1)f1(s2), the
adversary guesses wrong in scenarios 1 and 4. Error of
the adversary EA([s1, s2]) is q1f1(s1)f2(s2)+q2f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) .

• If q1f1(s1)f2(s2) = f1(s1)f2(s2) − q2f2(s1)f1(s2),
the adversary makes random guess in scenarios 2
and 4 and guesses wrong in scenario 1. Error of
the adversary EA([s1, s2]) is q1f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) +
1
2 ( (1−q1)f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) + q2f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) ) =
f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) .

• If f1(s1)f2(s2) − q2f2(s1)f1(s2) < q1f1(s1)f2(s2) <
f2(s1)f1(s2) − q2f2(s1)f1(s2), the adversary guesses
wrong in scenarios 1 and 2. Error of the adversary
EA([s1, s2]) is f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) .

• If q1f1(s1)f2(s2) = f2(s1)f1(s2) − q2f2(s1)f1(s2),
the adversary makes random guess in scenarios 1
and 3 and guesses wrong in scenario 2. Error of

the adversary EA([s1, s2]) is (1−q1)f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) +

1
2 ( q1f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) + (1−q2)f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) ) =
f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) .

• If q1f1(s1)f2(s2) > f2(s1)f1(s2) − q2f2(s1)f1(s2),
the adversary guesses wrong in scenarios 2
and 3. Error of the adversary EA([s1, s2]) is
1− q1f1(s1)f2(s2)+q2f2(s1)f1(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) .

To find the maximum error of the adversary given error of
the conference, we solve an optimization problem. In order
to formulate the optimization problem, we can combine the
5 cases above into 3 cases for simplicity.

• If q1f1(s1)f2(s2) ≤ f1(s1)f2(s2) − q2f2(s1)f1(s2),
error of the adversary EA([s1, s2]) is
q1f1(s1)f2(s2)+q2f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) .

• If f1(s1)f2(s2) − q2f2(s1)f1(s2) ≤ q1f1(s1)f2(s2) ≤
f2(s1)f1(s2) − q2f2(s1)f1(s2), error of the adversary
EA([s1, s2]) is f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) .

• If q1f1(s1)f2(s2) ≥ f2(s1)f1(s2) − q2f2(s1)f1(s2),
error of the adversary EA([s1, s2]) is 1 −
q1f1(s1)f2(s2)+q2f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) .

We let T (EC) = EC(u+ v)− u · (1−Φ1)− v ·Φ2 to be
a function that takes the error of the conference as input.

• Maximize q1f1(s1)f2(s2)+q2f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) subject to

EC([s1, s2])(f1(s1)f2(s2) + f2(s1)f1(s2)) −
f1(s1)f2(s2) · (1 − Φ1) − f2(s1)f1(s2) · Φ2 =
f1(s1)f2(s2)(2Φ1 − 1)q1 + f2(s1)f1(s2) · (1− 2Φ2)q2

and q1f1(s1)f2(s2) ≤ f1(s1)f2(s2)− q2f2(s1)f1(s2).
The maximum occurs at q1f1(s1)f2(s2) =
f1(s1)f2(s2) − q2f2(s1)f1(s2). Then the intersec-
tion of the two lines is q1 = 1− (2Φ1−1)u−T (EC([s1,s2]))

(2Φ1+2Φ2−2)u

and q2 = (2Φ1−1)u−T (EC([s1,s2]))
(2Φ1+2Φ2−2)v .

– If the intersection point can be reached, q1, q2 ∈ [0, 1],
(2Φ1 − 1)u ≤ T (EC([s1, s2])) ≤ (1 − 2Φ2)u,
then error of the conference EC([s1, s2]) ranges from

f1(s1)f2(s2)Φ1

f1(s1)f2(s2)+f2(s1)f1(s2) + f2(s1)f1(s2)Φ2

f1(s1)f2(s2)+f2(s1)f1(s2) to
f1(s1)f2(s2)(2−Φ1−2Φ2)
f1(s1)f2(s2)+f2(s1)f1(s2) + f2(s1)f1(s2)Φ2

f1(s1)f2(s2)+f2(s1)f1(s2) .
Error of the adversary EA([s1, s2]) is

f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) .

– If the intersection point can not be reached and
T (EC([s1, s2])) < (2Φ1−1)u, then no q1, q2 are qual-
ified for the constraints.

– If the intersection point can not be reached and
T (EC([s1, s2])) > (1− 2Φ2)u.

* If (1− 2Φ2)u < T (EC([s1, s2])) ≤ 0 then the maxi-
mum is reached when q1 = 0 and q2 = T (EC([s1,s2]))

(1−2Φ2)v .
Error of the conference EC([s1, s2]) ranges from
(2−Φ1−2Φ2)u+Φ2v

u+v (when T (EC([s1, s2])) = (1 −
2Φ2)u) to (1−Φ1)u+Φ2v

u+v (when T (EC([s1, s2])) = 0).
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Figure 5: A diagram illustrates the optimization problem in
this case.

Error of the adversary EA([s1, s2]) is T (EC([s1,s2]))
(1−2Φ2)(u+v) ,

ranges from u
u+v (when T (EC([s1, s2])) = (1 −

2Φ2)u) to 0 (when T (EC([s1, s2])) = 0).
* If T (EC([s1, s2])) > 0 then no q1, q2 are qualified for

the constraints.

• Error of the adversary EA([s1, s2]) is
f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) subject to f1(s1)f2(s2) −
q2f2(s1)f1(s2) ≤ q1f1(s1)f2(s2) ≤ f2(s1)f1(s2) −
q2f2(s1)f1(s2).
From Figure 5 we can see that error of the conference
EC([s1, s2]) has its extremes at q1 = 0, q2 = u

v and q1 =
1, q2 = 1− u

v . Therefore, error of the conference ranges
from (2−Φ1−2Φ2)u+Φ2v

u+v to (Φ1+2Φ2−1)u+(1−Φ2)v
u+v .

• Maximize 1 − q1f1(s1)f2(s2)+q2f2(s1)f1(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) subject

to EC([s1, s2])(f1(s1)f2(s2) + f2(s1)f1(s2)) −
f1(s1)f2(s2) · (1 − Φ1) − f2(s1)f1(s2) · Φ2 =
f1(s1)f2(s2)(2Φ1 − 1)q1 + f2(s1)f1(s2) · (1− 2Φ2)q2

and q1f1(s1)f2(s2) ≥ f2(s1)f1(s2)− q2f2(s1)f1(s2).
The maximum occurs at q1f1(s1)f2(s2) =
f2(s1)f1(s2) − q2f2(s1)f1(s2). Then the intersec-
tion of the two lines is q1 = (1−2Φ2)v−T (EC([s1,s2]))

(2−2Φ1−2Φ2)u and

q2 = T (EC([s1,s2]))−(2Φ1−1)v
(2−2Φ1−2Φ2)v .

– If the intersection point can be reached,
q1, q2 ∈ [0, 1], (1 − 2Φ2)v − (2 − 2Φ1 − 2Φ2)u ≤
T (EC([s1, s2])) ≤ (1 − 2Φ2)v, then error
of the conference EC([s1, s2]) ranges from

f1(s1)f2(s2)(1−Φ1)
f1(s1)f2(s2)+f2(s1)f1(s2) + f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2)

(when T (EC([s1, s2])) = (1 − 2Φ2)v) to
f1(s1)f2(s2)(Φ1+2Φ2−1)
f1(s1)f2(s2)+f2(s1)f1(s2) + f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2)

(when T (EC([s1, s2])) = (1 − 2Φ2)v − (2 − 2Φ1 −
2Φ2)u).
Error of the adversary EA([s1, s2]) is

f1(s1)f2(s2)
f1(s1)f2(s2)+f2(s1)f1(s2) .

– If the intersection point can not be reached and
T (EC([s1, s2])) > (1−2Φ2)v, then no q1, q2 are qual-
ified for the constraints.

– If the intersection point can not be reached and
T (EC([s1, s2])) < (1− 2Φ2)v − (2− 2Φ1 − 2Φ2)u.

* If (2Φ1 − 1)u + (1 − 2Φ2)v ≤ T (EC([s1, s2])) <
(1 − 2Φ2)v − (2 − 2Φ1 − 2Φ2)u then the max-
imum is reached when q1 = 1 and q2 =
T (EC([s1,s2]))−(2Φ1−1)u

(1−2Φ2)v .
Error of the conference EC([s1, s2]) ranges from
(Φ1+2Φ2−1)u+(1−Φ2)v

u+v (when T (EC([s1, s2])) = (1−
2Φ2)v − (2− 2Φ1 − 2Φ2)u) to Φ1u+(1−Φ2)v

u+v (when
T (EC([s1, s2])) = (2Φ1 − 1)u+ (1− 2Φ2)v).
Error of the adversary EA([s1, s2]) is
1 − T (EC([s1,s2]))+(2−2Φ1−2Φ2)u

(1−2Φ2)(u+v) , ranges
from u

u+v (when T (EC([s1, s2])) = (1 −
2Φ2)v − (2 − 2Φ1 − 2Φ2)u) to 0 (when
T (EC([s1, s2])) = (2Φ1 − 1)u+ (1− 2Φ2)v).

* If T (EC([s1, s2])) < (2Φ1 − 1)u+ (1− 2Φ2)v then
no q1, q2 are qualified for the constraints.

Therefore, the relation between error of the adversary and
error of the conference when Φ1 = 1

2−ϕ1 and Φ2 = 1
2 +ϕ2

where 0 < ϕ2 < ϕ1 and f1(s1)f2(s2) < f2(s1)f1(s2)
is of the shape of a trapezoid in [0, 1] as in Figure 6. Note
that the relation between the per-instance errors does not
change with the relation between values of f1(s1)f2(s2) and
f2(s1)f1(s2) or with the values of Φ1 and Φ2.

From Figure 6 we see that the conference should
keep its per-instance error between uΦ1+v(1−Φ2)

u+v and
u(Φ1+2Φ2−1)+v(1−Φ2)

u+v to stay optimal. The conference

cannot have its error less than uΦ1+v(1−Φ2)
u+v due to the

reviewers’ noise. If error of the conference is greater
than u(Φ1+2Φ2−1)+v(1−Φ2)

u+v , increasing its error does
not increase error the adversary and thus is not op-
timal. Thus, the Pareto frontier of per-instance error
of the adversary against error of the conference is the
first line segment with positive slope in Figure 6 when
min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
<

s1 < max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
.

C.6 Proof of Theorem 4.6
We prove that Algorithm 3 is optimal for each instance of
scores S = [s1, s2] with desired error of the conference
EC([s1, s2]) in the noisy setting. We carry the assumptions
from Section C.5 that Φ1 = 1

2 −ϕ1 and Φ2 = 1
2 +ϕ2 where

0 < ϕ2 < ϕ1 and f1(s1)f2(s2) < f2(s1)f1(s2).
From Proposition 4.1 we know that if a paper has higher

estimated quality under both assignments, the conference
should accept the paper. This is the optimal calibration strat-
egy for the conference.

Otherwise when the scores are in the region
min

{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
<
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Figure 6: Maximum per-instance error of the adversary
given per-instance error of the conference when u < v,
Φ1 = 1

2 − ϕ1 and Φ2 = 1
2 + ϕ2 with 0 < ϕ2 <

ϕ1. The coordinates in the plot are: 1© = uΦ1+v(1−Φ2)
u+v ,

2© = u(Φ1+2Φ2−1)+v(1−Φ2)
u+v , 3© = u(2−Φ1−2Φ2)+vΦ2

u+v , 4© =
u(1−Φ1)+vΦ2

u+v .

s1 < max
{
a2(a21+σ2)(s2−b2)

a1(a22+σ2)
+ b1,

a1(a22+σ2)(s2−b1)

a2(a21+σ2)
+ b2

}
,

we use the Pareto frontiers analyze the optimality of our
algorithm. Theorem 4.5 shows that the Pareto frontier in the
noiseless setting within this region. The analysis is similar
to the one in the noiseless setting in Section C.3.

Suppose f1(s1)f2(s2) < f2(s1)f1(s2), then the
endpoint on the Pareto frontier has error of the ad-
versary being f1(s1)f2(s2)

f1(s1)f2(s2)+f2(s1)f1(s2) and error of the

conference being f1(s1)f2(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)
f1(s1)f2+f2(s1)f1(s2) .

If f1(s1)f2(s2)Φ1+f2(s1)f1(s2)(1−Φ2)
f1(s1)f2(s2)+f2(s1)f1(s2) ≤ EC([s1, s2]) <

f1(s1)f2(s2)(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)
f1(s1)f2(s2)+f2(s1)f1(s2) , we maximize the

error of the adversary by operating on the Pareto frontier. If
EC([s1, s2]) ≥ f1(s1)f2(s2)(Φ1+2Φ2−1)+f2(s1)f1(s2)(1−Φ2)

f1(s1)f2(s2)+f2(s1)f1(s2) ,
we operate at the endpoint where error of the adversary is
maximum and error of the conference is no larger than the
desired EC([s1, s2]). The endpoint is the point with mini-
mum error of the conference such that error of the adversary
is maximum. Therefore, it is optimal for the conference.

Algorithm 3 follows the procedure by choosing the corre-
sponding q1 and q2 for each point on the Pareto frontier and
thus is optimal for the conference.


