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Abstract
This work presents a systematic benchmark of differentially
private synthetic data generation algorithms that can generate
tabular data. Utility of the synthetic data is evaluated by mea-
suring whether the synthetic data preserve the distribution of
individual and pairs of attributes, pairwise correlation as well
as on the accuracy of an ML classification model. In a com-
prehensive empirical evaluation we identify the top perform-
ing algorithms and those that consistently fail to beat baseline
approaches.

Introduction
While there are many compelling reasons to share data
about individuals, such sharing is often prevented due to
privacy concerns. Differentially private synthetic data gen-
eration stands out as an appealing solution to this prob-
lem: it provides strong formal privacy guarantees, while pro-
ducing a synthetic data set that “looks like” the real data
from the perspective of an analyst. This problem has re-
ceived considerable attention from the research community,
with a wide variety of approaches available in the literature.
[27, 26, 38, 40, 36, 29, 18, 29, 15, 35, 5, 10, 2, 20, 19, 21,
41, 22, 23, 32, 16, 33, 11].

Despite the variety of mechanisms available for this task,
the community is lacking a systematic empirical study that
compares a variety of mechanisms on different datasets,
tasks, and privacy levels. Prior work in this space includes
[29], which focuses on GAN-based algorithms in terms of
the machine learning classification accuracy; [13], which
focuses on GAN-based algorithms in terms of the utility
of classification, clustering, aggregation queries and privacy
protection; [9], which focuses on algorithms from the NIST
19 synthetic data challenge in terms of the marginal distri-
bution, joint distribution and correlation; [8], which focuses
on algorithms before 2016 in terms of the statistical utility;
[4], which proposes a general framework for evaluating the
quality of private synthetic data; and [37], which proposes a
framework SDGym to benchmark the performance of syn-
thetic data. However, none of these works both include a
representative set of state-of-the-art algorithms and cover a
representative set of metrics.

*Work done while at Tumult Labs.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Inspired by DPBench [17], we focus on benchmarking
differentially private synthetic data generation algorithms
selected from a specific set of inclusion criteria. Most DP
synthetic data generation algorithms learn a model over the
data from which synthetic data records are sampled. We cat-
egorize the algorithms included in our study into three broad
classes: GAN-based methods learn a generative adversarial
network (GAN) privately, mainly by adding noise to the gra-
dient calculation; Marginal-based methods measure a sub-
set of the low-order marginals and use them to fit a graphi-
cal model; and Workload-based algorithms iteratively im-
prove their model to reduce approximation error on work-
load queries.

We evaluate these mechanisms across different datasets
and privacy budgets on whether the synthetic data can pre-
serve the distribution of individual and pairs of attributes,
pairwise correlation and on the accuracy of an ML classifi-
cation model. Our experiments reveal a number of findings:
1. Many mechanisms, especially GAN-based mechanisms,

often fail to preserve the most basic statistics of the data
distribution — their one way marginals. Moreover, these
mechanisms fail to beat simple baseline mechanisms on
other more interesting metrics.

2. No single mechanism is best on every dataset and task,
and privacy budget considered. However, marginal-based
mechanisms consistently rank among the best.

3. Marginal-based methods expect discrete data, and proper
discretization is essential to get good performance on nu-
merical attributes. We found that using PrivTree [39] to
discretize numerical attributes is far more effective than
equal-width discretization.

Methodology
In this section, we describe the mechanisms included in this
study (and the justification for inclusion), the tasks consid-
ered, the datasets evaluated, as well as any modifications
necessary to run the mechanisms on our datasets.

Mechanisms
We consider five inclusion criteria for selecting the mecha-
nisms for this benchmark study, enumerated below:

1. End-to-End DP: It is claimed to be an end-to-end dif-
ferential private algorithm that takes a tabular dataset as



input and generates a synthetic data of the same schema.
2. Tabular Data: It supports tabular data that could have

numerical and/or categorical columns. The associated
publication includes experiments on tabular data.

3. Publication Venue: It is published in a top confer-
ence/journal or included in a well known library. For
example, we consider academic venues of SIGMOD,
VLDB, CCS, NeurIPS, ICML, PETS and JPC and the
open-source libraries of SmartNoise and Gretel. Algo-
rithms from other conferences/journals and libraries are
left for future work.

4. Publicly Available Source Code: Its source code is ac-
cessible to the public (e.g. either available on GitHub or
linked in the paper describing the work).

5. No Public Data: It requires no public data.
Table 1 lists the mechanisms included in this bench-

mark, categorizing them by type. Included in this table
is GretelRNN, which satisfied the inclusion criteria but is
not shown in the experimental results because we found that
even when the epsilon that it claims is over one million, it
generates an empty dataset after one hour of the generation
stage due to the high rejection rate of invalid samples.

Algorithm Code Type
MST [27] [24] Marginal
MWEM-PGM [26] [25] Marginal
PrivBayes [38, 40] [30] Marginal
DPGAN [36] [31] GAN
DPCTGAN [29] [31] GAN
PATEGAN [18] [31] GAN
PATECTGAN [29] [31] GAN
FEM [35] [34] Workload
RAP [5] [28] Workload
Kamino [15] [14] Other
RON-GAUSS [10] [7] Other
GretelRNN [2] [2] Other

Table 1: Mechanisms included in our study.

While we expect all the mechanisms to be able to take
a dataset with mixed-type columns as input, some of them
only accept categorical datasets or numerical datasets. For
mechanisms that expect numerical data, we one-hot encode
all categorical features. For mechanisms that expect categor-
ical data, we discretize all numerical features. We considered
two approaches for discretization: an equal-width binning
strategy, and a strategy based on PrivTree [39]. We find that
PrivTree binning was never worse than equi-width binning
in most of the cases and lead to significant improvements for
some metrics. Details omitted due to space.

Three mechanisms, MWEM-PGM, FEM and RAP, also re-
quire a workload as input. For datasets that include a classi-
fication label (see next section), we set the workload to be all
2- and 3-way marginals that include the label as one of the
attributes. For other datasets, we set the workload to be all
2-way marginals. For all algorithms except Kamino, we use
default hyper-parameters. For Kamino, the search algorithm
(Algorithm 6 from [15]) was not included in the available
implementation, so we implemented a variant of it.

Datasets
We consider seven datasets with different characteristics,
numbers of records, and column types. Datasets Car and
Mushroom contain only categorical attributes; Scooter con-
tains only numerical attributes; all other datasets contain a
mix of attribute types. Most datasets have a classification
label. All datasets are from the UCI machine learning repos-
itory [12] except Scooter which is from Gretel [1].

Name Records Cat. Numeric Label
Shopping 12330 9 10 Yes

Adult 32561 9 6 Yes
Bank 45211 13 8 Yes

Census 299285 29 12 Yes
Car 1728 7 0 Yes

Mushroom 8124 23 0 Yes
Scooter 27715 0 5 No

Table 2: Summary of datasets.

Metrics
We consider four groups of metrics to measure the
goodness-of-fit of the synthetic data generated by each algo-
rithm. Each group might include more than one metric but
with similar goals.1 These metrics are inspired by SDGym
[3]. For the first three metric groups, numerical attributes are
discretized into 19 bins of equal-depth (based on the original
data). Since the algorithms may generate synthetic data that
lies outside of this range, an additional bin is added to each
end of the range.

1. Individual Attribute Distribution Similarity (Ind)
This group of metrics measures the similarity of one-
way marginals between the synthetic data and the orig-
inal data. We use total variation distance (TVD), to mea-
sure the distance between two one-dimensional distribu-
tions, and use 1-TVD as the score. We report the average
score over all one-way marginal as the final score.

2. Pairwise Attribute Distribution Similarity (Pair) Sim-
ilar to the Individual Distribution Similarity, this group
of metrics measures the TVD for each two-way marginal
and we average across all attribute pairs.

3. Pairwise Correlation Similarity (Corr) We use
Cramer’s V with bias correction [6] to measure the corre-
lation between two attributes, and, following convention,
discretize it into one of four levels: V in [0, .1) is low,
[.1, .3) is weak, [.3, .5) is middle and [.5, 1) is strong.
The metric CorAcc measures the accuracy of correlation
levels, reporting the fraction of pairs where the synthetic
and original data assign the same correlation level.

4. Classification Accuracy (F1) We use the synthetic
dataset to train an XGBoost classifier and use it to make
predictions on the original data. The score is reported by
the f1 score using macro average. This metric category
only applies to datasets that have a class label.
1For brevity, we include a single metric per group. In the full

version of this paper, multiple metrics per group are considered.



(a) Optimal Rate (b) Average Ranking

Figure 1: Overview of mechanisms in terms of optimal rate
and average ranking across datasets, epsilons, and metrics
stratified by metric groups. GT means “Grand Total.”

(a) 1-TVD for individual attribute distributions

(b) Correlation accuracy (CorAcc)

(c) Classification accuracy, measured by f1 score, of an XGBoost
classifier. The F1 score by training on the original data is 0.86 for
Adult and 1.0 for Mushroom.

Figure 2: Performance metrics for synthetic data algorithms
at ϵ = 1.0

Findings
We use SDGym [37] as the platform for all the experiments.
The privacy parameter ϵ varies within {0.1, 1.0, 10.0}. In
this section, we briefly summarize our main findings.

F1: No algorithm dominates. We consider a mechanism
“optimal” for a particular combination of dataset, epsilon,
and metric if that mechanism achieves the best performance
(averaged over trials) according to the metric. The optimal
rate, shown in Fig. 1a, is the frequency at which a mech-
anism is optimal for a particular category of metric. Any
algorithm that has a non-zero optimal rate means that the
algorithm performs the best on at least one combination of
dataset, epsilon, and metric. Over half of the algorithms have
a non-zero optimal rate.

F2: While no algorithm dominates, marginal-based ap-
proaches are highly ranked and MST, in particular, is the
top-ranked algorithm across all metrics. To get a sense of
the overall best performing algorithm, we rank the algo-
rithms according to each metric and then average the rank-
ings. In Fig. 1b, we report the average ranking, stratified by
category of metric; we also report the average ranking across
all metrics (“GT”). The overall average rank of MST is 1.56
indicating that it is frequently the best algorithm, which is
also consistent with the results of Fig. 1a.
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(a) Distributions of the relationship attribute; a categorical at-
tribute with six possible values (shown as different colors).
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(b) Distributions of the age attribute; a numerical attribute dis-
cretized by quantiles (which is why the Ground Truth appears
uniform).

Figure 3: One-way marginal distributions for the original
Adult dataset and for a sample synthetic dataset generated
by each algorithm (ϵ = 1.0) in descending order by similar-
ity (1-TVD, shown to the right of each row).

F3: Many mechanisms fail to accurately preserve the dis-
tributions of individual attributes (1-way marginals). Fig. 2a
reports the average similarity (1-TVD) of individual at-
tribute distributions for two of the datasets in our bench-
mark, Adult and Mushroom. Several algorithms have an av-
erage similarity of less than 0.75. PrivBayes has uneven
performance, doing well on Mushroom and worse on Adult;
we hypothesize this is due to how PrivBayes discretizes nu-
merical attribues (Mushroom has no numerical attributes).

To gain some intuition for how well algorithms are pre-
serving attribute distributions, we display some representa-
tive examples in Fig. 3 from the Adult dataset. Fig. 3a uses
a stacked bar chart to compactly display the distribution of
the relationship attribute. The first row is the distribution in
the original data (ground truth) and the remaining rows are
the distributions in the synthetic datasets produced by the
algorithms, ordered by their similarity to the ground truth
(1-TVD is reported to the right of each row). When 1-TVD
is below 0.75, the distortion is visually apparent. Some algo-
rithms (DP-GAN, DP-CTGAN) have highly skewed distribu-
tions; others appear uniform (FEM) even though the original
data is non-uniform. Fig. 3b shows the distributions of the
numerical attribute age (after it was discretized).
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Figure 4: Correlation heatmaps for all pairwise categorical
attributes from the Adult dataset. A heatmap is shown for
the original data, Ground Truth (center), and for a sample
synthetic dataset generated by each algorithm at ϵ = 1.0.
Attributes are sorted by domain sizes.

In addition to looking at individual attribution distri-
butions, we also evaluate pairwise attribute correlations.
Fig. 2b reveals the extent to which correlations are ac-
curately preserved. It reports the CoreAcc metric for
datasets Adult and Mushroom. As a baseline for compari-
son, we include Independent, an algorithm that assumes
all columns are statistically independent (uncorrelated) and
generates synthetic data by sampling attribute values from
distributions estimated from 1-way marginals perturbed with
Laplace noise. We use a divergent color scheme to indicate
whether it is above (orange) or below (blue) the baseline.

The results in Fig. 2b give us two main findings. F4: In
terms of preserving attribute correlations, Marginal-based
algorithms consistently obtain the highest correlation accu-
racy. And, F5: Many algorithms fail to preserve correla-
tions more accurately than independent, a simple baseline
that generates uncorrelated data.

To gain some intuition about correlations, we look more
closely at the correlation accuracy on the Adult dataset.
Fig. 4 shows correlation heatmaps for the original data
(Ground Truth, center plot) and for synthetic datasets gener-
ated by the algorithms. In each heatmap, a cell corresponds
to an attribute pair and darker cells indicate stronger cor-
relation (the colors are discretized to the four correlation
levels described earlier). The figure shows that marginal-
based algorithms (top row) do fairly well (CorAcc=0.75
means 75% of the colored cells match the ground truth
figure) though some correlations are not captured. Several
algorithms (FEM, PATE-CTGAN, DP-CTGAN) have accu-
racy matching the baseline Independent. The correlation
plots show why: the synthetic data generated by these algo-
rithms has attributes that appear to be statistically indepen-
dent (uncorrelated), matching the independent baseline. The
remaining algorithms have accuracy that is lower than the
baseline and it appears that this is due to those techniques
introducing spurious correlation.

F6: The synthetic data produced by marginal-based ap-
proaches MST and MWEM-PGM is of sufficient quality that it
can be used to train an accurate classifier, nearly matching
the performance of a classifier trained on the original data.
In Fig. 2c, we report how well the synthetic data preserves
the ability to train a classifier. It shows the f1 score of an
XGBoost classifier trained on the synthetic data. On Mush-
room, the classifiers trained on the synthetic data from MST
and MWEM-PGM achieve nearly perfect accuracy; on Adult,
MWEM-PGM achieves the highest f1 score of 0.74, which ap-
proaches the f1 on the original data of 0.86. The relatively
strong performance of MWEM-PGM may reflect the fact that
its strategy is tuned to support classifier learning by favoring
marginals that include the class label.

F7: The synthetic data produced by GAN-based ap-
proaches yields classifers that are generally no more accu-
rate than a simple majority classifier. In Fig. 2c, we include
baseline algorithm Independent. Since this algorithm
models each attribute independently, a classifier trained on
its synthetic data can be no more accurate than a classifier
that always predicts the majority label. In this figure, we
again use a divergent color scheme to compare performance
to this basline and we see the GAN-based approaches often
have an f1 score below the baseline.

Conclusion
We presented a systematic benchmark study of differentially
private synthetic data generation algorithms that can gener-
ate tabular data. We considered a variety of algorithms in-
cluding GAN-based, Marginal-based and Workload-based
methods and evaluated their utility in terms of how well they
preserve low dimensional statistics, pairwise correlations
and ML classification accuracy. We found that Marginal-
based methods consistently outperformed other methods,
and GAN-based methods were unable to preserve the 1-
dimensional statistics of tabular data. Our research motivates
future research directions that include developing better
GAN methods for tabular data, methods for pre-processing
categorical/numeric data types, and identifying methods to
choose the best synthetic data algorithms given a dataset.
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G. Koutrika, and S. Madden, editors, Proceedings of
the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, pages 139–154.
ACM, 2016. doi: 10.1145/2882903.2882931. URL
https://doi.org/10.1145/2882903.2882931.

[18] J. Jordon, J. Yoon, and M. van der Schaar. PATE-
GAN: generating synthetic data with differential pri-
vacy guarantees. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=S1zk9iRqF7.

[19] H. Li, L. Xiong, L. Zhang, and X. Jiang. Dpsynthe-
sizer: Differentially private data synthesizer for privacy
preserving data sharing. Proc. VLDB Endow., 7(13):
1677–1680, 2014. doi: 10.14778/2733004.2733059.
URL http://www.vldb.org/pvldb/vol7/p1677-li.pdf.

[20] K. Li and J. Malik. Implicit maximum likelihood es-
timation. CoRR, abs/1809.09087, 2018. URL http:
//arxiv.org/abs/1809.09087.

[21] N. Li, Z. Zhang, and T. Wang. Dpsyn: Experiences in
the NIST differential privacy data synthesis challenges.
CoRR, abs/2106.12949, 2021. URL https://arxiv.org/
abs/2106.12949.

[22] T. Liu, G. Vietri, T. Steinke, J. R. Ullman, and Z. S.
Wu. Leveraging public data for practical private query
release. In M. Meila and T. Zhang, editors, Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learn-
ing Research, pages 6968–6977. PMLR, 2021. URL
http://proceedings.mlr.press/v139/liu21w.html.

[23] T. Liu, G. Vietri, and Z. S. Wu. Iterative methods
for private synthetic data: Unifying framework and
new methods. CoRR, abs/2106.07153, 2021. URL
https://arxiv.org/abs/2106.07153.

[24] R. McKenna. Impelementation of MST.
https://github.com/ryan112358/private-pgm/blob/
aae58df3dc27b9d7ceb9eeab75a02549b3bc870e/
mechanisms/mst.py, 2021. [released 19-Oct-2021].

https://github.com/gretelai/gretel-synthetics/blob/master/examples/data/uber_scooter_rides_1day.csv
https://github.com/gretelai/gretel-synthetics/blob/master/examples/data/uber_scooter_rides_1day.csv
https://github.com/gretelai/gretel-synthetics/blob/master/examples/data/uber_scooter_rides_1day.csv
https://github.com/gretelai/gretel-synthetics/tree/v0.15.10
https://github.com/gretelai/gretel-synthetics/tree/v0.15.10
https://github.com/sdv-dev/SDGym
https://arxiv.org/abs/2004.07740
http://proceedings.mlr.press/v139/aydore21a.html
http://proceedings.mlr.press/v139/aydore21a.html
https://github.com/BorealisAI/private-data-generation/tree/737df84e3f1ee521190cc2b62ce408ad708206e6
https://github.com/BorealisAI/private-data-generation/tree/737df84e3f1ee521190cc2b62ce408ad708206e6
https://github.com/BorealisAI/private-data-generation/tree/737df84e3f1ee521190cc2b62ce408ad708206e6
https://doi.org/10.2478/popets-2019-0003
https://doi.org/10.2478/popets-2019-0003
http://archive.ics.uci.edu/ml
http://www.vldb.org/pvldb/vol13/p1962-fan.pdf
http://www.vldb.org/pvldb/vol13/p1962-fan.pdf
https://github.com/cgebest/kamino/tree/0e4f63a2199fa140fb050b50516582f616d0583f
https://github.com/cgebest/kamino/tree/0e4f63a2199fa140fb050b50516582f616d0583f
http://www.vldb.org/pvldb/vol14/p1886-ge.pdf
http://proceedings.mlr.press/v130/harder21a.html
http://proceedings.mlr.press/v130/harder21a.html
https://doi.org/10.1145/2882903.2882931
https://openreview.net/forum?id=S1zk9iRqF7
http://www.vldb.org/pvldb/vol7/p1677-li.pdf
http://arxiv.org/abs/1809.09087
http://arxiv.org/abs/1809.09087
https://arxiv.org/abs/2106.12949
https://arxiv.org/abs/2106.12949
http://proceedings.mlr.press/v139/liu21w.html
https://arxiv.org/abs/2106.07153
https://github.com/ryan112358/private-pgm/blob/aae58df3dc27b9d7ceb9eeab75a02549b3bc870e/mechanisms/mst.py
https://github.com/ryan112358/private-pgm/blob/aae58df3dc27b9d7ceb9eeab75a02549b3bc870e/mechanisms/mst.py
https://github.com/ryan112358/private-pgm/blob/aae58df3dc27b9d7ceb9eeab75a02549b3bc870e/mechanisms/mst.py


[25] R. McKenna. Impelementation of MWEM-PGM.
https://github.com/ryan112358/private-pgm/blob/
aae58df3dc27b9d7ceb9eeab75a02549b3bc870e/
mechanisms/mwem%2Bpgm.py, 2021. [released
19-Oct-2021].

[26] R. McKenna, D. Sheldon, and G. Miklau. Graphical-
model based estimation and inference for differen-
tial privacy. In International Conference on Machine
Learning, pages 4435–4444. PMLR, 2019.

[27] R. McKenna, G. Miklau, and D. Sheldon. Win-
ning the NIST contest: A scalable and general ap-
proach to differentially private synthetic data. CoRR,
abs/2108.04978, 2021. URL https://arxiv.org/abs/
2108.04978.

[28] A. Research. Impelementation of RAP. https://github.
com/amazon-research/relaxed-adaptive-projection/
tree/1960dc66a28ad2a6b1a5670ec1d7102bde4fd034,
2021. [released 29-Jun-2021].

[29] L. Rosenblatt, X. Liu, S. Pouyanfar, E. de Leon, A. De-
sai, and J. Allen. Differentially private synthetic data:
Applied evaluations and enhancements. arXiv preprint
arXiv:2011.05537, 2020.

[30] SDGym. Impelementation of PrivBayes.
https://github.com/sdv-dev/SDGym/tree/
59cf1b4007661943aa3283473156cfd44c5fc527/
privbayes, 2019. [released 6-May-2019].

[31] SmartNoise. Impelementation of DPGAN,
DPCTGAN, PATEGAN and PATECTGAN.
https://github.com/opendp/smartnoise-sdk/tree/
a99f004732d7779f082a09037c5204165a94e81e/sdk/
opendp/smartnoise/synthesizers/pytorch/nn, 2021.
[released 13-Jul-2021].

[32] J. Snoke and A. B. Slavkovic. pmse mechanism:
Differentially private synthetic data with maximal
distributional similarity. In J. Domingo-Ferrer and
F. Montes, editors, Privacy in Statistical Databases -
UNESCO Chair in Data Privacy, International Con-
ference, PSD 2018, Valencia, Spain, September 26-28,
2018, Proceedings, volume 11126 of Lecture Notes
in Computer Science, pages 138–159. Springer, 2018.
doi: 10.1007/978-3-319-99771-1\ 10. URL https://
doi.org/10.1007/978-3-319-99771-1 10.

[33] R. Torkzadehmahani, P. Kairouz, and B. Paten.
DP-CGAN: differentially private synthetic data and
label generation. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops, CVPR
Workshops 2019, Long Beach, CA, USA, June 16-20,
2019, pages 98–104. Computer Vision Foundation /
IEEE, 2019. doi: 10.1109/CVPRW.2019.00018. URL
http://openaccess.thecvf.com/content CVPRW
2019/html/CV-COPS/Torkzadehmahani DP-
CGAN Differentially Private Synthetic Data and
Label Generation CVPRW 2019 paper.html.

[34] G. Vietri. Impelementation of FEM.
https://github.com/giusevtr/fem/tree/
f538f61c564dbc38c2fc8e63b8af0a6f7bb5ba0a,
2021. [released 10-Jun-2021].

[35] G. Vietri, G. Tian, M. Bun, T. Steinke, and Z. S. Wu.
New oracle-efficient algorithms for private synthetic
data release. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-
18 July 2020, Virtual Event, volume 119 of Proceed-
ings of Machine Learning Research, pages 9765–9774.
PMLR, 2020. URL http://proceedings.mlr.press/v119/
vietri20b.html.

[36] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou. Differ-
entially private generative adversarial network. CoRR,
abs/1802.06739, 2018. URL http://arxiv.org/abs/1802.
06739.

[37] L. Xu, M. Skoularidou, A. Cuesta-Infante, and
K. Veeramachaneni. Modeling tabular data using con-
ditional gan. Advances in Neural Information Process-
ing Systems, 32, 2019.

[38] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivas-
tava, and X. Xiao. Privbayes: private data release via
bayesian networks. In C. E. Dyreson, F. Li, and M. T.
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