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Abstract

A variety of conditions and limiting properties complicate the
anonymization of trajectory data, since they are sequential,
high-dimensional, bound to geophysical restrictions and eas-
ily mapped to semantic points of interest and regions with
known properties like suburban neighborhoods, industrial ar-
eas or city-centers. Learning the places where one has been is
extremely privacy-invasive. However, analyzing real trajecto-
ries holds numerous promises, ranging from better informed
traffic management, to location recommendations or compu-
tational social science, infrastructure and even urban devel-
opment planning.
The aim of this paper is to establish various challenges, stem-
ming from ideas and also limitations of existing proposals for
the anonymization of trajectories, and subsequently identify
research opportunities. Keeping both utility and privacy chal-
lenges prominent, we sketch the way towards establishing
a useful research framework and propose possible research
venues towards privacy-preserving trajectory publication.

Introduction
Everyday, the value and interest of location and trajectory
data are becoming more and more noticeable not only in
our lives but also among data-analytics companies. At the
same time, the ability of personal devices (e.g., wearables,
smartphones) and navigation systems to accurately collect,
process, and analyze these data is growing at an unprece-
dented rate thanks to recent technological advances. Traf-
fic management, urban planning, transportation systems de-
sign, routing advice, or homeland security are just a few of
the many applications relying nowadays on trajectory anal-
yses (Gangadharan 2013).

Despite the economic and societal good that comes from
data analytics in general, raising tensions exist with the per-
ceived risks to individuals’ privacy (Tarnoff 2018; Ovide
2020). To deal with these tensions, current legal frameworks
in Europe and other regions limit the collection, processing
and sharing of personal data. The European General Data
Protection Regulation (GDPR) indeed requires the devel-
opment of methods to anonymize those personal data as
one way to circumvent processing restrictions. Facilitating
privacy-preserving analysis of location trajectories therefore
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is, not only a scientific challenge, but also a legal require-
ment.

A trajectory database is one where each record is a tra-
jectory, that is to say, a sequence of timestamped locations
(such as GPS coordinates). However, as we shall describe in
the following sections, anonymizing this type of databases is
no easy task. Well-known metrics and techniques in the field
of data privacy, such as k-anonymity (Samarati and Sweeney
1998) or ϵ-differential privacy (ϵ-DP) (Dwork 2006), ei-
ther are not immediately applicable to sequential and high-
dimensional databases, or the guarantees of privacy they
could provide are not clear. Besides, each data point in a
trajectory strongly depends on its predecessor by the natural
properties of motion; and this correlation poses important
challenges to the implementation of privacy mechanisms.

Likewise, a profound understanding of the particularities
of trajectory data is vital for their protection. Although at
first sight it may appear they are innocuous to user privacy,
trajectories may reveal accurate behavioral patterns, in terms
of when and for how long a particular individual does what,
allowing an attacker to infer circumstances and trends affect-
ing sensitive aspects of an individual’s life, including health
status, religious beliefs, social relationships, or sexual pref-
erences.

To make matters worse, trajectories always have a spatio-
temporal context. With publicly available information such
as street maps and the maximum velocity of a transport
means, or with background knowledge about data subjects
(such as their place of residence or work), adversaries can
improve their attacks against privacy algorithms (Dai et al.
2020; Yang et al. 2020). In this sense, research shows
that knowing only four spatio-temporal points is enough to
uniquely identify 95% of the individuals (De Montjoye et al.
2013).

Background knowledge can also identify false or impossi-
ble trajectories. Adding noise naı̈vely to protect a trajectory
may thus fail to protect the privacy of the respective individ-
ual. Furthermore, certain noisy coordinates may be unreach-
able1, or geo-spatially incoherent, if they include impossible
locations (e.g., driving through a building or lake). Also, new

1Reachability refers to the property of real trajectories that
movement between two consecutive locations is attainable in the
time given (Domingo-Ferrer and Trujillo-Rasua 2012). It depends
on the movement speed of the users.



noisy trajectories could be “semantically” identical: for ex-
ample, regardless of your position on a road or the specific
parking spot you occupy in a parking lot, the sensitive infor-
mation is that you are driving on that road or parked in that
parking lot. Therefore, any coordinate disturbance that does
not change the semantic property of your position does not
provide any kind of privacy.

To top it off, numerous applications of trajectories-data
analyses involve repeated computations, since the goal is
typically one of monitoring, e.g., of traffic conditions. How-
ever, regularly publishing updated versions of an underlying
database that are useful is a highly challenging task. The
main reason is that one needs to ensure that the combination
of information from any already anonymized data does not
compromise individuals’ privacy. On the one hand, syntac-
tic anonymization methods cannot ensure this in a practical,
real-world scenario, where multiple data controllers are very
likely to anonymize data independently. On the other hand,
although DP can take advantage of a composition property
to preserve (to a limited extent) the privacy guarantee af-
ter repeated data releases, it sadly is at the cost of a signifi-
cant degradation in data utility (Bambauer, Muralidhar, and
Sarathy 2013; Fredrikson et al. 2014). This important limi-
tation is typically addressed with unreasonably large values
of ϵ, which unfortunately may vanish any expectation of pri-
vacy for individuals (Domingo-Ferrer, Sánchez, and Blanco-
Justicia 2021; Ruggles et al. 2019).

All issues above raise serious concerns about the current
state of the art for trajectory anonymization, particularly
about whether existing technology can effectively guaran-
tee individuals’ privacy and strike an acceptable balance be-
tween disclosure risk and utility.

In this paper, we examine the state of the art on privacy-
preserving trajectory publication, where the goal is to pub-
lish a database with personal trajectories or statistics thereof,
while ensuring certain privacy and utility guarantees. Our
analysis of current anonymization technology covers syn-
tactic and semantic notions of privacy and is organized into
metrics of privacy and utility and anonymization mecha-
nisms. Based on this analysis, we establish various chal-
lenges, stemming from ideas and also limitations of existing
proposals, for the anonymization of trajectories, and identify
opportunities for future research.

The rest of the paper is organized as follows. First, we
overview the state of the art on trajectory data anonymiza-
tion. After that, we elaborate on the limitations and problems
identified in our analysis of the literature. Finally, we envis-
age opportunities and solutions, and draw some concluding
remarks.

Trajectories and Data Sets
There are a few types of trajectories that are used in tra-
jectory privacy. The simplest of them, containing the ba-
sic structure present in the rest, are called raw trajectories
and consist of an ordered sequence of spatio-temporal points
T = (x1, y1, t1) → · · · → (xn, yn, tn). More complex rep-
resentations called semantic trajectories exists, where the lo-
cation evolves from a simple coordinate point to a point-of-
interest (POI), which are provided with semantic meaning,

such as a name and description, and possibly other informa-
tion such as number of visitors or opening hours. Even more
complex trajectories exist, called multiple aspect trajecto-
ries (Mello et al. 2019), which additionally consider any
possible type of recordable information, like weather vari-
ations, transportation mode, or the heart rate or emotions of
individuals.

Trajectory databases consist of multiple trajectories from
different individuals (or moving objects) over a common re-
gion. Notable differences between them exist. Some data
models consist of trajectories of equal length, including
some of which are additionally uniformly distributed in time
(i.e., every trajectory has a spatio-temporal point for every x
minutes) (Hua, Gao, and Zhong 2015); while others are less
regular, with spatio-temporal points only appearing when
the user arrives (or stays) at a notable location (Cao and
Yoshikawa 2015). We note that each of them comes with
their own limitations and opportunities.

Measuring Privacy and Utility
Privacy metrics. There exist two well-known families of
privacy notions in the field of statistical disclosure con-
trol (Hundepool et al. 2012), namely, syntactic and semantic
notions (Clifton and Tassa 2013).

In the syntactic case, k-anonymity (Samarati
and Sweeney 1998) and its extensions (such as l-
diversity (Machanavajjhala et al. 2007) and t-closeness (Li,
Li, and Venkatasubramanian 2007)) are classical represen-
tatives in the field. Several attempts have been made to
translate or adapt these notions for trajectory data. In (Abul,
Bonchi, and Nanni 2008), for example, a data set is said to
satisfy (k, δ)-anonymity if, for any trajectory, there exists
k− 1 other trajectories such that at every timestep the corre-
sponding locations are no more than δ/2 away, allowing us
to place these k trajectories in a “cylinder” of radius δ. Like-
wise, Poulis et al. (2014) proposes adapting km-anonymity
as follows: a data set is km-anonymous if every continuous
subtrajectory of length at most m is contained in at least k
trajectories. Gramaglia et al. (2017) also extend this notion
to introduce kτ,ϵ-anonymity, where the authors consider the
maximum additional knowledge that the attacker is allowed
to learn. Similarly, (K,C)L-privacy (Chen et al. 2013)
implies that the adversary cannot distinguish the victim’s
trajectory, of which they know at most L locations, from
K − 1 other records, with a confidence in the inference
better than C.

In the semantic case, DP is probably the best-known no-
tion. Although it was originally proposed to protect the out-
comes of queries to a static database (i.e., interactive set-
ting)2, mechanisms to publish or generate DP static data sets
(i.e., non-interactive setting) appeared soon after. Few recent
works, however, have tackled the problem of publishing pro-
tected versions of a dynamic database with DP guarantees,
when the publication strategy is to release all available data
or a synopsis thereof (e.g., histograms) at regular time in-

2The assumption is that an anonymization mechanism sits be-
tween the user submitting queries and the database answering
them.



stants (Dwork et al. 2010; Li et al. 2015; Chen, Shen, and
Jin 2015), or to protect only new or updated data at a given
release time (Fan and Xiong 2014; Chen et al. 2017; Leal
et al. 2018; Fioretto and Hentenryck 2019). The main ob-
stacle one encounters when protecting dynamic data of this
kind, especially when the goal is to publish the database it-
self (Leal et al. 2018) (rather than statistics derived from it),
is that the privacy budget will be consumed completely at
some time instant by the sequential composition property of
DP. This means that the level of protection is obviously fi-
nite in time, and that making the data useful is a challenging
task: the larger the number of releases, the smaller the ϵ as-
signed to each of them and therefore the more noise needs
to be added.

To partly mitigate this problem, some of the works men-
tioned above and others have relied on alternative definitions
of DP like event-level privacy (Dwork 2008, 2010), which
differs from user-level privacy. In the field of trajectory data,
the latter means to protect the whole trajectory history of any
user, whilst the former protects a single location point (i.e.,
the event). Kellaris et al. (2014) introduces a balance of both
notions called w-event privacy, which instead protects win-
dows of w sequential events (see also Figure 1, left).

Figure 1: Left table illustrates a privacy model of w-event,
while right shows that of ℓ-trajectory privacy (w = ℓ = 3).
In both tables, each column represents the trajectory of
a user uj , where locations are non-uniformly distributed
through time.

As an improvement over w-event privacy, Cao and
Yoshikawa (2015) reformulate the notion of ϵ-DP for tra-
jectory data, obtaining ℓ-trajectory privacy. This model is
slightly based on user-level privacy (see Figure 1, right).
The authors define a data stream as St = {D1, . . . , Dt},
where Di corresponds to the data set at the timestamp i
and t denotes the current time. Two streams are said to be
ℓ-neighbouring if they are completely equal except in a sin-
gle continuous subtrajectory of length ℓ, where each location
must differ. A mechanism Λ that takes as input prefixes of
data streams St is said to be ℓ-trajectory private if for any
ℓ-neighbouring data streams St and S′

t,

Pr[Λ(St) = Nt] ≤ eϵ · Pr[Λ(S′
t) = Nt]

for any possible output data stream Nt.

Utility metrics. A variety of metrics have been proposed
to quantify the utility of anonymized trajectories.

In the special case of raw trajectories, we find some com-
mon general metrics. For example, numerous authors rely
on statistical measures, like the similarity of distributions

regarding trajectory length and most visited places (Luca
et al. 2020). Clustering-based methods, such as (Hua, Gao,
and Zhong 2015; Chen et al. 2020; Li et al. 2017), and oth-
ers often build upon the Hausdorff distance, which basically
provides a (pessimistic) notion of a distance between trajec-
tories, based on the Euclidean distance between the corre-
sponding locations.

Examples of more specific metrics, closer to actual appli-
cations of trajectory analytics, comprise frequent sequential
patterns mining (Chen, Acs, and Castelluccia 2012), which
looks at the difference of the most frequent sequential pat-
terns between raw and sanitized data, and count query (Abul,
Bonchi, and Nanni 2008; Chen, Acs, and Castelluccia 2012;
Chen, Fung, and Desai 2011; Wang et al. 2021c). The lat-
ter assesses the utility of a count query Q through the error
measure shown in Eq. (1), where Q(D) denotes the number
of occurrences of the sequence Q in the database D.

error(Q(D̂)) =
|Q(D̂)−Q(D)|

max{Q(D), Q(D̂)}
. (1)

In an entirely analogous manner, spatio-temporal range
queries (Hua, Gao, and Zhong 2015) compute an error mea-
sure similar to Eq. (1). However, in this case, the query
counts all points at a specific space region over all trajec-
tories in a given time interval.

A utility metric that tackles semantic trajectories is pro-
posed in (Cunningham et al. 2021). Here, each location is
represented in three dimensions, namely, spatial, temporal
and categorical. Accordingly, each dimension is assigned an
associated distance function: time and physical distance for
the spatial and temporal dimensions, and the authors define a
categorical distance function as the difference in the seman-
tic meaning between two locations using a hierarchy (in a
logical way: e.g., dc(Bar,Restaurant) < dc(Bar,Church)).
The authors then use this distance to define preservation
range queries, which output the percentage of locations in a
data set at a distance no greater than δ from the correspond-
ing permuted location. The authors also investigate another
utility metric that quantifies hotspot3 preservation, by com-
puting the spatio-temporal distance between the hotspots’
location in the original and the sanitized data sets.

Mechanisms: Achieving Privacy
In this section, we examine the most relevant mechanisms
that aim to enforce the aforementioned privacy notions in
the context of trajectory anonymization. We first describe
those mechanisms providing syntactic guarantees, to after-
wards cover those ensuring semantic notions.

Syntactic privacy. There exist three main general
anonymization techniques to enforce syntactic pri-
vacy (Tortelli Portela, Vicenzi, and Bogorny 2019):
suppression, the removal of those location samples or
entire trajectories that cause privacy issues; generalization,
making records indistinguishable from others by reducing

3Hotspots are defined as location and time range during which
the location is visited by a large number of users, e.g., a stadium
during a match, or a train station at rush hour.



the trajectories’ precision or by grouping samples into
larger ranges; and (perturbative) masking, which comprises
a multitude of techniques including data perturbation,
based on noise addition, location merging or clustering,
or the creation of new entries either by dummy generation
or probabilistic condensation, to name a few. Suppression
and generalization techniques are also grouped into non-
perturbative masking (Hundepool et al. 2012), since they
preserve the truthfulness of data without distorting it, albeit
losing information.

The vast majority of anonymization technology combines
several of the general techniques mentioned above. Next, we
succinctly describe the most relevant works.

Abul, Bonchi, and Nanni (2008) implement the method
of Never Walk Alone (NWA), which uses data cluster-
ing and spatial translation to ensure the output database is
(k, δ)-anonymous. Other methods that also use some type
of masking include a location permutation method described
(Domingo-Ferrer and Trujillo-Rasua 2012). This method
clusters trajectories using microaggregation4 and then per-
mutes the locations by sensitive-attribute generalization and
local suppression. Dai et al. (2018) extends the idea to ad-
ditionally consider the semantic dimension. Poulis et al.
(2014) proposes methods where locations are merged into
pairs until km-anonymity is satisfied, one by merging the
nearest locations first, and another where the semantic simi-
larity of locations is taken into account.

Grouping similar trajectories and removing some of them
to ensure k-anonymity are also frequent methods used in the
literature, such as in (Pensa et al. 2008; Dong and Pi 2018).
In the former, authors construct a prefix trees and prune sub-
sequences which fail to achieve the k threshold in counts;
whilst in the latter, authors introduce a method that stud-
ies the frequency of subtrajectories and removes the infre-
quent ones, grouping the rest into representatives to ensure
k-anonymity.

In (Nergiz et al. 2009), the authors anonymize trajectories,
first by ensuring k-anonymity via suppression and general-
ization techniques. Here specific points are replaced by cell
grids. They also introduce a way to return to the original do-
main by randomly reconstructing representations from the
original data set. Another method based on generalization
and suppression appears in (Monreale et al. 2010), classify-
ing locations into areas, with (Monreale et al. 2011) serv-
ing as an extension of it, where they generalize locations
respecting their semantic meaning using a notion similar to
l-diversity.

Finally, Chen et al. (2013) define a method based on lo-
cal suppression, which removes only some instances from
the data set so to ensure (K,C)L-privacy and preserve in-
stances of spatio-temporal points and frequent sequences in
the trajectory data.

Semantic privacy. Next, we examine anonymization al-
gorithms that, either publish trajectory databases satisfying
DP, or provide statistics (e.g., counts of similar trajectories)
about the underlying database with DP guarantees.

4Microaggregation is a type of clustering with a bound to the
number of elements in each cell.

Figure 2: Example of how trajectory data are anonymized
through clustering techniques. Different trajectories are rep-
resented in different colours, with points corresponding to
the physical location over each time step. The colored areas
represent the groups defined by the selected partition, and
stars denote the centroids of each subset. In this example,
trajectories are of length |T | = 4 and the selected partition
contains m = 2 subsets.

Noisy counts is a common approach based on the Lapla-
cian mechanism. An archetypal example is Chen, Fung, and
Desai (2011); Chen, Acs, and Castelluccia (2012), which re-
lies on variable n-gram models of trajectories, to add Lapla-
cian noise to the counts of the most representative n-grams
before release. Additionally, in (Chen, Acs, and Castelluc-
cia 2012) a method to generate synthetic data from released
n-grams is proposed.

Clustering-based mechanisms5 constitute another ap-
proach used in trajectory privacy (Hua, Gao, and Zhong
2015; Li et al. 2017; Chen et al. 2013). The idea is to merge
concurrent locations from different trajectories following a
probabilistic partitioning based on the exponential mecha-
nism. More specifically, the authors suggest a score function
to measure distances between trajectories crossing locations
at each time step. Using the exponential mechanism and this
score function, they choose one of the candidate partitions
(into m groups) of Γi, the universe of locations in the trajec-
tory database at time ti. Finally, all the locations of each sub-
set are clustered together and replaced by their correspond-
ing centroid (see Figure 2).

After selecting a partition and replacing the actual lo-
cations by centroids, the original location universe in each
time step Γi is replaced by a smaller one, Γ̃i, which contains
perturbed information. The new trajectories are constructed
from this reduced universe Γ̃i. In addition to this process,
the authors propose several DP release methods, which usu-
ally add trajectories drawn from Γ̃i at random, with its count
attributed following the Laplacian mechanism, until obtain-
ing a sanitized database of the same size as the original. The
resulting data set is claimed to meet the privacy guarantees.

On the other hand, Cunningham et al. (2021) introduce
a mechanism for perturbing semantic trajectories that sat-
isfies ϵ-local differential privacy (ϵ-LDP) (Kasiviswanathan
et al. 2011). The authors also find a way of implementing
public knowledge into the privacy mechanism to improve
its utility without affecting the privacy budget ϵ. They use

5Some authors also refer to this mechanism as generaliza-
tion, but it is not used in this paper to avoid confusion with the
previously-defined generalization technique.



this public knowledge to partition the set of all POIs into
spatio-temporal-categorical regions, such that each one con-
tains some number of POIs, whilst still preserving hotspots.
Essentially, the mechanism can be divided into four parts:
first, it generalizes every location into the corresponding re-
gion; it partitions these new trajectories into n-grams which
are then perturbed, following the exponential mechanism,
to ensure ϵ-LDP; then a reconstruction of the trajectory is
done by minimizing a distance function defined over the
three dimensions; and finally the mechanism returns to the
initial domain by randomly picking a location in each sec-
tion, making sure that consecutive locations in a trajectory
are reachable in the corresponding time.

Limitations in Privacy Guarantees
Although syntactic notions can in general provide high util-
ity data, they are susceptible to various well-known at-
tacks (e.g., background knowledge or attribute-linkage at-
tacks). This, together with the fact that they are not compos-
able (Soria-Comas and Domingo-Ferrer 2016), limit the ap-
plication of syntactic technology to continuously protect tra-
jectory data. In the remainder of the section, we first present
some works emphasizing this limitation, and then review
proposals relying on semantic protection.

Trujillo-Rasua and Domingo-Ferrer (2013) analyze
NWA (Abul, Bonchi, and Nanni 2008) and show that is
not able to protect a new trajectory added to a set of al-
ready k-indistinguishable trajectories. Likewise, Chen et al.
(2013) state that a data set with high sequential correla-
tion cannot be properly protected with simple k-anonymity
methods.

In an experiment comparing three ways of noise addition
for trajectory data, Jiang et al. (2013) conclude that adding
noise to each position is better than adding it to each spa-
tial coordinate or to the whole trajectory. Also, models that
generalize only one of the trajectories’ dimensions, such
as (Abul, Bonchi, and Nanni 2008; Monreale et al. 2011;
Dong and Pi 2018), are susceptible to attacks on the other
dimensions, as these still hold sensitive information, and
should be avoided.

Even if DP was presented as a strong privacy guarantee,
the exact notion of privacy it provides is sometimes not clear,
as explained in (Lee and Clifton 2011). Moreover, several
papers (Cao et al. 2017; Wang et al. 2021a; Yang, Sato,
and Nakagawa 2015; Abowd et al. 2021; Xiao and Xiong
2015) have set the weakness of this notion when correla-
tions among attributes in the database are notorious. Un-
fortunately, in trajectory data, locations visited by individ-
uals are correlated through its movement’s nature (physical
laws of motions, speed restrictions of roads, usual human be-
haviour, etc.) (De Montjoye et al. 2013). As a consequence,
a privacy violation could occur even if DP mechanisms are
applied.

An analysis (Cao and Yoshikawa 2015) of DP notions tai-
lored for trajectory data suggests that event-level privacy is
not safe because of the vulnerable nature of this type of data
with respect to background knowledge attacks. The authors
of this work also claim that w-event privacy fails in trajec-
tory protection since user’s trajectories are sparse and are not

uniformly distributed over the timeline, and might therefore
not fit in the window.

While previous limitations focus on rather general as-
pects, the remainder of this subsection will analyze deficien-
cies in specific proposals for DP protection.

In clustering-based methods, a first problem arises when
we consider speed limitations in cities, where the probabilis-
tic merging of locations can likely produce impossible tra-
jectories in real-world situations, i.e., trajectories such that
two consecutive locations are unreachable in the given time;
naturally, this may provide adversaries with new venues for
attack. Besides, all proposals (Hua, Gao, and Zhong 2015;
Li et al. 2017; Chen et al. 2013) building on this clustering
method seem to be flawed. The apparent defect to our eyes
is the following: the release of the centroids alone (i.e., with-
out connecting them to form a trajectory) at each time step
is a process that the authors ensure to guarantee ϵ|T |-DP
through the application of exponential mechanism at each
time step and the sequential composition property. Here, |T |
denotes the length of a trajectory T (which is supposed to
be constant in the database). However, the authors aim to
publish trajectories, naturally by linking the centroids. But,
to do so, they use the unprotected, original data to find the
proper sequence. Unfortunately, a data-dependent operation
of this kind violates DP.

Chen, Fung, and Desai (2011) and Chen, Acs, and Castel-
luccia (2012) define noisy counts performances and inves-
tigate whether adding noise to the frequency counts of n-
grams really provides privacy. Since the released sequences
are the original ones and there is no sampling or other
process in-between, a certain specific sequence could iden-
tify an individual, even if the frequency of these sequences
are modified. We notice that, even though the mechanism
might be effective against re-identification attacks, an at-
tacker could indeed discover other locations visited by the
individual. For instance, if any appearance of the sequence
p1 → p2 in the data set is always followed (or preceded)
by the spatio-temporal point p3, then an attacker could learn
that any user that visits p1 and p2, must surely also visit p3,
although they would not be able to identify the user’s entire
trajectory. Similarly, an analogous probabilistic attack can
be created if a high percentage of sequences p1 → p2 are
followed by p3.

Limitations in Utility Guarantees
This section describes several limitations affecting data util-
ity. We proceed next with general limitations, and then with
more specific ones related to metrics and evaluation method-
ologies.

General problems. We first highlight some general is-
sues that are inherent to the nature of trajectory data. Chen
et al. (2013) point out some of them that imply a signif-
icant utility loss when applying k-anonymity-based meth-
ods. Data sets with sparse or short trajectories pose a great
challenge for these anonymization methods, since trajecto-
ries can have little overlap, which leads to an unavoidable
data and utility loss. Similarly, for semantic notions, sparse-
ness produces high sensitivities and also triggers the need



of adding more noise to achieve the same privacy budget.
An example of these problems are seen later when we ap-
proach noisy counts. Also, generalization methods could be
inefficient for high-dimensional databases, due to the curse
of dimensionality (Aggarwal 2005).

Another general problem appears in anonymization meth-
ods that are based on perturbative masking. Gramaglia et al.
(2017) states that to preserve truthfulness of data, it cannot
rely on randomized, perturbed, permuted or synthetic data,
since the addition of fictitious data introduces unpredictable
biases in the final sanitized data sets. Furthermore, this type
of mechanisms can also lead to the creation of impossible
trajectories, with unreachable locations or geo-spatial incon-
sistencies. For example, the clustering-based methods used
in (Hua, Gao, and Zhong 2015; Li et al. 2017; Chen et al.
2013) can yield new locations which might be illogical, such
as coordinates on top of buildings or rivers.

Metrics. In the first instance, the Hausdorff distance
might seem very appropriate to quantify the utility of an
anonymized trajectory database, as it is a well-established
metric for distance measurements. However, its main limi-
tation is that it does not take into consideration the temporal
dimension. This way, two trajectories over the same physi-
cal route, but with time variations, are considered to be the
same trajectory under this distance, which clearly may lead
to a huge utility loss. If we take a look at the possible ap-
plications that motivate the need for private release of tra-
jectory data, as for instance traffic jams prediction, we can
anticipate that this metric is likely to hide major problems,
especially in terms of flow6.

The shortcomings of distribution of length and distribu-
tion of most visited places, are even more apparent. We
could have very similar length and most-visited-places dis-
tributions in two databases that are really different from all
other aspects of the trajectories, such as shape or time. It
is clear that there are too many possible trajectories of the
same length with nothing else in common. Likewise, there
are actually different paths that cross through common pop-
ular locations, so distributions of most visited locations is
probably not the most representative metric to make sure al-
gorithms are working correctly.

Lastly, we would like to stress the adequacy of the current
usage of spatio-temporal range queries, count query and fre-
quent sequential pattern. Even though these utility metrics
are more close to reality applications of trajectory data, pri-
vacy designers should be careful when choosing their pa-
rameters. For example, if one chooses long radii or time in-
tervals, or if one takes big ranges of K in the top K frequent
sequences, the evaluation of how useful is an anonymized
database is not going to be representative.

Methodologies. Next, we report deficiencies in method-
ologies of the state of the art to assess utility.

In general, privacy designers should be careful about the
database employed to evaluate utility. One potential issue
might result from biased databases with unrealistic data

6Traffic flow is the number of vehicles that cross a certain sec-
tion of the road per unit of time.

distributions, giving us an erroneous perception that the
developed algorithms may provide high-utility data. One
example that illustrates this issue is Microsoft’s T-driver
database7 (Yuan et al. 2010, 2011), which consists in a
database of taxis from Beijing. The problem with this type
of database is that the particular and specialized behaviour
of taxi drivers may not be representative of the whole pop-
ulation, which probably is going to make long stops at the
specific location (e.g., at work or at the grocery store). An-
other example are public transport databases, such as the
Montreal Transit Corporation8 (STM) database. These types
of databases have an abnormally small universe of locations
(e.g., bus stops, train stations), and short and frequent stop
times. Furthermore, public transport vehicles follow pre-
fixed routes and stops, which are shared between different
lines.

Another limitation we have identified in existing method-
ologies for clustering-based anonymization (Hua, Gao, and
Zhong 2015; Li et al. 2017; Chen et al. 2013) is that the
score function (of the exponential mechanisms of DP), only
depends on distance, and therefore does not take into con-
sideration any measurement regarding time. Sadly, doing so
may spoil data accuracy for a wide variety of interesting us-
age purposes that are heavily dependent on timing and flow.

Similarly, a problem that appears when we put time aside
is related with stationary sequences, which can be observed
in trajectories with uniform time-stamps, when, for example,
a car is stopped at a location. After a driver makes a stop
(at work, for shopping, or any other usual task), the spatial
location is going to remain the same at each time step until
the car starts to move again (e.g., see Figure 2, where the
dark blue point is exactly in the same location in each time
step, because it represents a stop position in the trajectory).
For example, if the car remains stationary from ti to tj , we
have the following trajectory subsequence:

(x0, y0, t0) → · · · → (xi, yi, ti) → (xi, yi, ti+1) →
→ (xi, yi, ti+2) → · · · → (xi, yi, tj) →

→ (xj+1, yj+1, tj+1) → · · · .

Since merging locations probabilistically is only based on
distances, the sanitized data will likely not reflect this stop,
because the constant spatial point along time (same coor-
dinates along various time steps) is going to be substituted
by the corresponding centroids at each time step. In Figure
2 we can see that the locations of the dark blue stationary
trajectory are going to be changed into pairwise different lo-
cations at each time step. This produces an apparent random
movement which removes the stop.

Another issue we have observed is the poor utility that
noisy counts approaches (Chen, Fung, and Desai 2011;
Chen, Acs, and Castelluccia 2012) might offer, which re-
sults from implicitly assuming that raw trajectories contain
a large number of common prefixes and n-grams. Since

7https://www.microsoft.com/en-us/research/publication/t-
drive-trajectory-data-sample/

8https://www.stm.info/en/about/developers/available-data-
description



the anonymization process adds noises to real counts of n-
grams, if the counts of these ones are small, then the noise
added to each one will become higher with fatal conse-
quences in utility terms. Unfortunately, real world databases
do not follow this assumption very often (i.e., we cannot as-
sume there will be many common n-grams).

Opportunities
In this section, we sketch out possible strands of future re-
search that may overcome some of the deficiencies identi-
fied in the previous section. Given the technical limitations
of current syntactic notions to protect dynamic data, we fo-
cus on anonymization technology providing semantic guar-
antees.

Usually in data processing, clustering methods are a good
option. In our review of the state of the art, we found various
problems regarding where those methods were applied, but
obviously this does not mean that we have to ruled them out
completely. Instead of getting rid of clustering, what we seek
is to find a methodology that overcomes the reported limita-
tions. For this purpose, we are interested in an algorithm that
takes time into account, and we believe that clustering of en-
tire trajectories, instead at each time instant, could be more
useful in terms of utility. Merging entire trajectories would
reduce problems such as the temporal-related inconsisten-
cies of the resulting trajectories. It would also solve the prob-
lem presented, in terms of privacy, which involves drawing
the new trajectories from the clustered locations. Clustering
methods that not only depend on physical but also on tem-
poral dimension could provide better utility in flow terms,
and help address certain inconveniences like the removal of
stops.

In this sense, topological clustering based on per-
sistent homology in a high-dimensional way (including
time), could be an interesting approach for two main rea-
sons: its qualitative predominance and its low computa-
tional cost (Pokorny, Goldberg, and Kragic 2016; Pokorny,
Hawasly, and Ramamoorthy 2016). The main advantage of
utilizing this type of clustering would be being able to merge
entire trajectories according to topological properties, rather
than just grouping a set of locations at every time step. How-
ever, how to enforce DP and deal with high dimensional data
in this context is by no means obvious.

On the other hand, the main problem with enforcing DP
in trajectories is that data correlation can violate its privacy
guarantee. One possibility to deal with this is to adapt alter-
native notions of privacy (based on the original idea of DP)
like APL-free ϵ-DP (Wang et al. 2021b), to a trajectory con-
text. Similarly, some topological models have been proposed
to identify privacy issues using relations, Dowker simpli-
cial complexes and lattices (Erdmann 2017). The adaptation
of these models and methodologies to our trajectory back-
drop, where attributes will be regarded as locations visited
by users, seems a great opportunity to explore.

On the other hand, as mentioned in the previous sec-
tion, (Cunningham et al. 2021) prevents the publication of
impossible trajectories in perturbation-based mechanisms,
by detecting reachability violations and re-anonymizing any
impossible trajectory. This way, the authors ensure what the

sanitized database consists of well-defined trajectories. Be-
cause the algorithm in question only uses public knowledge
(e.g., maximum movement velocity), it does not rely on any
data-dependent operation to perform all this processing and
hence it does not consume any privacy budget. Entirely anal-
ogous algorithms could of course be incorporated into any
perturbative mechanism like this to ensure that all trajecto-
ries are well-defined. This could allow us to address geo-
spatial inconsistencies, which would also translate into data
sets of higher utility.

Just to finish it off, we would like to mention certain
metrics of utility that, depending on the privacy designer’s
needs, could be more effective to evaluate future algorithms
and results. This includes a good use of the state of the art,
incorporating metrics of different context as, for instance,
flow measurement, where we find some accuracy metrics
extracted from non-privacy specific literature (Luca et al.
2020), such as RMSE, MAE, MAPE, MSE, and CPC. Also, it
could be useful to explore temporal metrics based on waiting
times and circadian rhythms, and temporal location patterns.

Summary
The first part of this paper has analyzed the state of the art of
anonymization technology for trajectory data. We have ex-
amined how these data are commonly represented and which
aspects they may capture; and reviewed the most relevant
metrics and anonymization mechanisms enforcing syntactic
and semantic protection. This dissection of current technol-
ogy has allowed us to delve into the limitations of the current
solutions, in terms of the promised privacy guarantees, and
the utility left after anonymization. This second part of our
work has more specifically identified technical impediments,
whereby an important part of the examined technology may
not effectively protect individuals’ privacy and/or preserve
most of the utility of trajectory data, in a continuous data
publication scheme.
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