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Abstract

The Private Aggregation of Teacher Ensembles (PATE) (Pa-
pernot et al. 2018) is an important private machine learn-
ing framework. It combines multiple learning models used
as teachers for a student model that learns to predict an out-
put chosen by noisy voting among the teachers. The resulting
model satisfies differential privacy and has been shown effec-
tive in learning high quality private models in semisupervised
settings or when one wishes to protect the data labels.
This paper asks whether this privacy-preserving framework
introduces or exacerbates bias and unfairness and shows that
PATE can introduce accuracy disparity among individuals
and groups of individuals. The paper analyzes which algo-
rithmic and data properties are responsible for the dispro-
portionate impacts, why these aspects are affecting different
groups disproportionately, and proposes guidelines to miti-
gate these effects. The proposed approach is evaluated on sev-
eral datasets and settings.

1 Introduction
The availability of large datasets and inexpensive computa-
tional resources has rendered the use of machine learning
(ML) systems instrumental for many critical decisions in-
volving individuals, including criminal assessment, landing,
and hiring, all of which have a profound social impact. A key
concern for the adoption of these system regards how they
handle bias and discrimination and how much information
they leak about the individuals whose data is used as input.

Differential Privacy (DP) (Dwork et al. 2006) is an algo-
rithmic property that bounds the risks of disclosing sensitive
information of individuals participating in a computation. It
has become the paradigm of choice in privacy-preserving
machine learning systems and its deployments are grow-
ing at a fast rate. However, it was recently observed that
DP systems may induce biased and unfair outcomes for dif-
ferent groups of individuals (Bagdasaryan, Poursaeed, and
Shmatikov 2019; Pujol et al. 2020; Xu, Du, and Wu 2021).

The resulting outcomes can have significant societal and
economic impacts on the involved individuals: classification
errors may penalize some groups over others in important
determinations including criminal assessment, landing, and
hiring (Bagdasaryan, Poursaeed, and Shmatikov 2019) or
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can result in disparities regarding the allocation of critical
funds and benefits (Pujol et al. 2020). While these surpris-
ing observations are becoming increasingly common, their
causes are largely understudied and not fully understood.

This paper makes a step toward this important quest, and
studies the disparate impacts arising when training a model
using Private Aggregation of Teacher Ensembles (PATE)
(Papernot et al. 2018) an important and popular privacy-
preserving machine learning framework. It combines mul-
tiple agnostic learning models used as teachers for a student
model which learns to predict an output chosen by noisy vot-
ing among the teachers. The resulting model satisfies differ-
ential privacy and has been shown effective in learning high
quality private models in semisupervised settings or when
one wishes to protect the data labels.

The paper analyzes which properties of the algorithm
and the data are responsible for the disproportionate im-
pacts, why these aspects are affecting different individuals
or groups of individuals disproportionately, and proposes a
solution that may aid mitigating these effects.

In summary, the paper makes the following contributions:
1. It uses a fairness notion that relies on the concept of ex-

cessive risk, and measures the direct impact of privacy to
the model accuracy for individuals or groups.

2. It analyzes this fairness notion in PATE, a state-of-the-art
privacy-preserving ML framework.

3. It isolates key components of the model parameters and
the data properties which are responsible for the observed
disparate impacts.

4. It studies when and why these components affect differ-
ent individuals or groups disproportionately.

5. Finally, based on these findings, it proposes a method that
may aid in mitigating these unfairness effects while re-
taining high accuracy.
To the best of the authors knowledge, this work repre-

sents a first effort toward understanding the reasons of the
disparate impacts in privacy-preserving ensemble models.

2 Related Work
The study of the disparate impacts caused by privacy-
preserving algorithms has recently seen several impor-
tant developments. Ekstrand, Joshaghani, and Mehrpouyan
(2018) raise questions about the tradeoffs involved between



privacy and fairness. Cummings et al. (2019) study the trade-
offs arising between differential privacy and equal opportu-
nity, a fairness notion requiring a classifier to produce equal
true positive rates across different groups. They show that
there exists no classifier that simultaneously achieves (ε, 0)-
DP, satisfies equal opportunity, and has accuracy better than
a constant classifier. This development has risen the ques-
tion of whether one can practically build fair models while
retaining sensitive information private. Jagielski et al. (2018)
presents two algorithms that satisfy (ε, δ)-differential pri-
vacy and equalized odds. Mozannar, Ohannessian, and Sre-
bro (2020) develops methods to adapt a nondiscriminatory
learner to work with privatized protected attributes and Tran,
Fioretto, and Hentenryck (2021) proposes a differentially
private learning approach to enforce several group fairness
notions using a Lagrangian dual method.

Pujol et al. (2020) were seemingly the first to show, em-
pirically, that resource allocation decisions made using DP
datasets may disproportionately affect some groups of indi-
viduals over others. These studies were complemented the-
oretically by Tran et al. (2021). Similar observations were
also made in the context of model learning. Bagdasaryan,
Poursaeed, and Shmatikov (2019) empirically observed that
the accuracy of a DP model trained using DP-Stochastic
Gradient Descent (DP-SGD) decreases disproportionately
across groups causing larger negative impacts to the un-
derrepresented groups. Farrand et al. (2020); Uniyal et al.
(2021) reaches similar conclusions and show that this dis-
parate impact is not limited to highly imbalanced data.

This paper builds on this body of work and their impor-
tant empirical observations. It provides an analysis for the
reasons of unfairness in the context of semi-supervised pri-
vate learning ensembles, a commonly adopted scheme in
privacy-preserving ML systems as well as introduces miti-
gating guidelines.

3 Preliminaries: Differential Privacy
Differential privacy (DP) (Dwork et al. 2006) is a strong pri-
vacy notion used to quantify and bound the privacy loss of
an individual’s participation in a computation. Informally,
it states that the probability of any output does not change
much when a record is added or removed from a dataset,
limiting the amount of information that the output reveals
about any individual. The action of adding or removing a
record from a dataset D, resulting in a new dataset D′, de-
fines the notion of adjacency, denoted D ∼ D′.
Definition 1. A mechanismM :D→R with domain D and
range R is (ε, δ)-differentially private, if, for any two adja-
cent inputs D ∼ D′∈D, and any subset of output responses
R ⊆ R:

Pr[M(D) ∈ R] ≤ eε Pr[M(D′) ∈ R] + δ.

Parameter ε > 0 describes the privacy loss of the algo-
rithm, with values close to 0 denoting strong privacy, while
parameter δ ∈ [0, 1) captures the probability of failure of
the algorithm to satisfy ε-DP. The global sensitivity ∆` of
a real-valued function ` : D → R is defined as the max-
imum amount by which ` changes in two adjacent inputs:

∆` = maxD∼D′ ‖`(D) − `(D′)‖. In particular, the Gaus-
sian mechanism, defined byM(D) = `(D)+N (0,∆2

` σ
2),

whereN (0,∆2
` σ

2) is the Gaussian distribution with 0 mean
and standard deviation ∆2

` σ
2, satisfies (ε, δ)-DP for δ >

4
5 exp(−(σε)2/2) and ε<1 (Dwork, Roth et al. 2014).

4 Problem Settings and Goals
This paper considers a private dataset D consisting of n in-
dividuals’ data points (xi, yi), with i∈ [n], drawn i.i.d. from
an unknown distribution Π. Therein, xi∈X is a feature vec-
tor that may contain a protected group attribute ai∈A⊂X ,
and yi ∈Y = [C] is a C-class label. For example, consider
a classifier that needs to predict criminal defendant’s recidi-
vism. The training example features xi may describe the in-
dividual’s demographics, education, occupation, and crime
committed, the protected attribute ai, if available, may de-
scribe the individual’s gender or ethnicity, and yi represents
whether or not the individual has high risk to reoffend.

This paper studies the fairness implications arising when
training privacy-preserving semi-supervised transfer learn-
ing models. The setting is depicted in Figure 1. We are given
an ensemble of teacher models T = {f i}ki=1, with each
f i : X →Y trained on a non-overlapping portion Di of D.
This ensemble is used to transfer knowledge to a student
model f̄θ :X →Y , where θ denotes a vector of real-valued
parameters associated with model f̄ .

The student model f̄ is trained using a public dataset
D̄={xi}mi=1 with samples drawn i.i.d. from the same distri-
bution Π considered above but whose labels are unrevealed.
The paper focuses on learning classifier f̄θ using knowledge
transfer from the teacher model ensemble T while guaran-
teeing the privacy of each individual’s data (xi, yi)∈D. The
sought model is learned by minimizing the regularized em-
pirical risk function

?

θ = argminθ L(θ; D̄,T )

=
∑
x∈D̄

`
(
f̄θ(x), v (T (x))

)
+ λ‖θ‖2, (1)

where ` : Y × Y →R+ is a loss function and measures the
performance of the model, v : Yk → Y is a voting scheme
used to decide the prediction label from the ensemble T ,
with T (x) used as a shorthand for {f i(x)}ki=1, and λ > 0
is a regularization parameter.

The paper focuses on learning classifiers that protect the
disclosure of the individual’s data using the notion of differ-
netial privacy and it analyzes the fairness impact (as defined
below) of privacy on different groups and individuals.

Privacy Privacy is achieved by using a differentially pri-
vate version ṽ of the voting function v, defined as

ṽ(T (x))=argmaxj{#j(T (x))+N (0, σ2)} (2)

which perturbs the reported counts #j(T (x)) = |{i : i ∈
[k], f i(x) = j}| associated to label j ∈ Y , via additive
Gaussian noise of zero mean and standard deviation σ. The
overall approach, called PATE, guarantees (ε, δ)-differential
privacy, with privacy loss scaling with the magnitude of
the standard deviation σ and the size of the public dataset
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Figure 1: Illustration of PATE and aspects contributing to fairness.

D̄ (Papernot et al. 2018). A detailed discussion reviewing
the privacy analysis of PATE is reported in Appendix 11.
Throughout the paper, the privacy-preserving parameters of
the model f̄ are denoted with θ̃.

Fairness The fairness analysis focuses on the notion of ex-
cessive risk (Wang, Ye, and Xu 2017; Zhang et al. 2017). It
defines the difference between the private and non private
risk functions:

R(S,T )
def
= Eθ̃

[
L(θ̃;S,T )

]
− L(

?

θ;S,T ), (3)

where the expectation is defined over the randomness of
the private mechanism, S is a subset of D̄, and θ̃ de-
notes the private student’s model parameters while

?

θ=
argminθ L(θ; D̄,T ). The above definition captures both in-
dividual R({x},T ) excessive risk for a sample x and group
R(D̄←a,T ) excessive risk for a group a, where D̄←a de-
notes the subset of D̄ containing exclusively samples whose
group attribute is a ∈ A. This paper uses shorthands R(x)
and R(D̄←a) to denote R(x,T ) and R(D̄←a,T ).

Finally, this paper assumes that the private mechanisms
are non-trivial, i.e., they minimize the population-level ex-
cessive risk R(D̄) and the fairness goal is to minimize ex-
cessive risk difference among all individuals and/or groups.

5 PATE Fairness Analysis: Roadmap
The next sections focus on two orthogonal aspects of PATE:
the algorithm’s parameters and the public student data dis-
tribution characteristics and analyze their fairness impact.

Within the algorithm’s parameters, in addition to the pri-
vacy variable σ, the paper reveals two surprising aspects
which have a direct impact on fairness: The size k of the
teacher ensemble and the regularization parameter λ asso-
ciated with the student risk function. Regarding the public
student data’s characteristics, the paper shows that the mag-
nitude of the sample input norms ‖x‖ and the distance of
a sample to the decision boundary (denoted s(x)) play de-
cisive roles to exacerbate the excessive risk induced by the
student model. These aspects are illustrated schematically
with green dotted lines in Figure 1.

Several aspects of the analysis in this paper rely on the
following definition.

Definition 2 (Flipping probability). Given a data sample
(x, y) ∈ D, for an ensemble model T and voting scheme
v, the flipping probability of T is defined as:

p↔x
def
= Pr [ṽ(T (x)) 6= v(T (x))] . (4)

It connects the voting confidence of the teacher ensemble
with the perturbation induced by the privacy-preserving vot-
ing scheme, and will be instrumental in the fairness analysis
introduced below.

The following sections use several standard datasets in-
cluding UCI Adults, Credit card, Bank, and Parkinsons
(Blake and Merz 1988; Little et al. 2007; Moro, Cortez, and
Rita 2014) to support the theoretical claims. The results use
feed-forward networks with two hidden layers and nonlinear
ReLU activations for both the ensemble and student mod-
els. All reported metrics are average of 100 repetitions, used
to compute the empirical expectations. When not otherwise
stated, the experiments refer to the Credit card dataset.

The main paper reports a glimpse of the empirical results,
which appears in an extended form in the Appendix (13).
Additional description of the dataset and proofs of all theo-
rems are reported in the Appendix.

6 Algorithm’s Parameters
This section focuses on analyzing the algorithm’s parame-
ters that affect the disparate impact of the student model out-
puts. In more details, it shows that, in addition to the privacy
parameter σ, the regularization term λ of the empirical risk
function L(θ, D̄,T ) (see Equation (1)) and the size k of the
teacher ensemble T largely control the difference between
model learned with noisy and clean labels. The fairness anal-
ysis reported in this section assumes that the student model
loss `(·) is convex and decomposable:

Definition 3 (Decomposable function). A function `(·) is
decomposable if there exists a parametric function hθ :X →
R, a constant real number c, and a function z :R→R, such



that, for x∈X , and y∈Y:

`(fθ(x), y) = z(hθ(x)) + c y hθ(x). (5)

Note that a number of loss functions commonly adopted
in machine learning, including the logistic loss or the least
square loss function, are decomposable (Gao et al. 2016; Pa-
trini et al. 2014). Additionally, while it is common to impose
restrictions on the nature of the loss function to render the
analysis tractable, our findings are empirically validated on
non-linear models.

The following theorem sheds light on the unfairness in-
duced by PATE and the dependency with its parameters. It
provides an upper bound on the expected difference between
the non-private and private student model parameters. As the
paper will show in Theorem 3, this quantity is closely related
with the excessive risk. Therein,

?

θ and θ̃ represent the pa-
rameters of student model f̄ which are learned as a result of
training, respectively, with a clean or noisy voting scheme.
Theorem 1. Consider a student model f̄θ trained with a
convex and decomposable loss function `(·). Then, the ex-
pected difference between the private and non-private model
parameters is upper bounded as follows:

E
[
‖

?

θ −θ̃‖
]
≤ |c|
mλ

∑
x∈D̄

p↔x ‖gx‖

 , (6)

where c is a real constant and gx = maxθ ‖∇θhθ(x)‖ rep-
resents the maximum gradient norm distortion introduced by
a sample x. Both c and h are defined as in Equation (5).
The proof relies on λ-strong convexity of the loss function
L(·) (see Appendix 12). Theorem 1 relates the difference
in the expected private and non-private student parameters
with three key factors: (1) the regularization term λ, (2) the
flipping probability p↔x , and (3) the the maximum gradient
norm distortion gx induced by a sample x. The former two
factors are mechanisms-dependent components and the sub-
ject of study of this section. As it will be shown next, they
are controlled by the size k of the teacher ensemble and
the noise parameter σ. The discussion about data dependent
components, including those related with the gradient norms
is delegated to Section 7.

Throughout the paper, the quantity ‖
?

θ −θ̃‖ is referred to
as model sensitivity to privacy, or simply model sensitivity,
as it captures the effect of the private teacher voting on the
student learned model.

The impact of the regularization term λ The first im-
mediate observation of Theorem 1 is that variations of the
regularization term λ can reduce or magnify the difference
between the private and non-private student model parame-
ters. Since the model sensitivity E‖

?

θ −θ̃‖ relates directly to
the excessive risk (see Theorem 3), the regularization term
affects the disparate impact of the privacy-preserving stu-
dent model. These effects are further illustrated in Figure
2. The figure shows how increasing λ reduces the empiri-
cal expected difference between the privacy-preserving and
original model parameters E‖

?

θ −θ̃‖ (left), as well as the ex-
cessive risk R(D̄←a) difference between groups a = 0 and
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Figure 2: Credit-card dataset with σ = 50, k = 150. Model
sensitivity (left), empirical risk (middle), and model accu-
racy (right) as a function of the regularization term.

a = 1 (middle). Note, however, that while larger λ values
may reduce the model unfairness, they can hurt the resulting
model accuracy, as shown in the right plot. The latter is an
intuitive and recognized effect of large regularizers factors.

The impact of the teachers ensemble size k The second
aspect considered in this section is the relation between the
ensemble size k and the resulting private model fairness. The
following result relates the size of the ensemble with its vot-
ing confidence.
Theorem 2. For a sample x ∈ D̄ assume that the teacher
models outputs f i(x) are in agreement for all i ∈ [k]. Then,
the flipping probability p↔x is given by:

p↔x = 1− Φ(
k√
2σ

), (7)

where Φ(·) is the CDF of the standard normal distribution,
and σ is the standard deviation in the Gaussian mechanism.
The proof is based on the properties of independent Gaus-
sian random variables.

The analysis above sheds light on the outcome of the
teachers voting scheme and its relation with the ensemble
size k (as well as the privacy parameter σ). It shows that
larger k values correspond to smaller flipping probability
p↔x . Combined with Theorem 1, the result suggests that the
difference between the private and non-private model pa-
rameters is inversely proportional to k.

While for simplicity of analysis Theorem 2 requires the
decision of all teachers to agree on a given sample x, our
empirical analysis supports this result for the more general
scenario where different teachers have different agreements
on a sample. Figure 3 (left) illustrates the relation between
the number k of teachers and the flipping probability p↔x of
the ensemble. The plot shows a clear trend indicating that
larger ensembles result in smaller flipping probabilities.

Next, analogously to what is reported in Figure 2, Fig-
ure 4 shows that increasing k reduces the difference in the
expected private and non-private model parameters (left), re-
duces the group excessive risk difference (middle), and in-
creases the model f̄ accuracy (right). However, similarly as
for the regularization term λ, there is also a downside of us-
ing very large ensembles: large values k can reduce the accu-
racy of the (private and non-private) models. While studying
these tradeoffs goes beyond the scope of this work, we be-
lieve this behavior is related with the bias-variance tradeoff
imposed on the growing ensemble: The larger the ensemble
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Figure 4: Credit card dataset with σ=50, λ=100. Expected
model sensitivity (left), empirical risk (middle), and model
accuracy (right) as a function of the ensemble size.

the less data each teacher is given to train their models, thus
affecting their voting accuracy. We believe this is an inter-
esting and important direction for future work.
This section concludes with a useful corollary of Theorem 1.

Corollary 1 (Theorem 1). Let f̄θ be a logistic regression
classifier. Its expected model sensitivity is upper bounded as:

E
[
‖

?

θ −θ̃‖
]
≤ 1

mλ

∑
x∈D̄

p↔x ‖x‖

 . (8)

The result above highlights several interesting points.
First, in logistic regression, samples with large input norms
can have a non negligible impact on fairness. This place em-
phasis on an nontrivial aspect of the student data proper-
ties which may affect fairness and is subject of study of the
next section. Second, it indicates the presence of a relation
between gradient norms and input norms, which is further
highlighted in Figure 3 (right). The plot illustrates the strong
correlation between input norms and their associated gradi-
ent norms.

7 Student’s Data Properties
Having examined the algorithmic properties of PATE affect-
ing fairness, this section turns on analyzing a set of proper-
ties concerning the student data which regulate the dispro-
portionate impacts of the algorithm. The subsequent set of
results shows that the norms of the student’s data samples
and their distance to the decision boundary are two key fac-
tor tied to the exacerbation of excessive risk in PATE.

The following is a corollary of Theorem 1 and bounds the
second order statistics of the model sensitivity to privacy.

Corollary 2 (Theorem 1). Given the same settings and as-
sumption of Theorem 1, it follows:

E
[
‖

?

θ −θ̃‖2
]
≤ |c|

2

mλ2

∑
x∈D̄

p↔2
x ‖gx‖2

 . (9)

Note that as similarly shown by Corollary 1, when f̄θ is a lo-
gistic regression model, the gradient norm ‖gx‖ in Equation
(9) can be substituted with the input norm ‖x‖.

The result above is useful to derive an upper bound on the
excessive risk, as illustrated in the following theorem.
Theorem 3. Let `(·) be a βx-smooth loss function. The ex-
cessive risk R(x) of a sample x is upper bounded as:

R(x) ≤ ‖∇?
θ
`(f̄?
θ
(x), y)‖U1 +

1

2
βxU2, (10)

where, U1 = E
[
‖

?

θ −θ̃‖
]

and U2 = E
[
‖

?

θ −θ̃‖2
]

capture
the first and second order statistics of the model sensitivity.
The proof of the above theorem relies on Theorem 1 and
Corollary 2, which provide bounds for the first and second
order statistics of the model sensitivity, and on the properties
of smooth functions.

Theorem 3 provides an upper bound on the (individual)
excessive risk. It shows the presence of three central fac-
tors controlling this excessive risk: (1) the gradient norm
‖∇?
θ
`(f̄?
θ
(x), y)‖ for a sample x, (2) the smoothness param-

eter βx associated with a sample x, and (3) the model sen-
sitivity (captured by terms U1 and U2). As the paper shows
next, these seemingly unrelated factors are controlled indi-
rectly by two key data aspects: the samples input norms and
their distance to the decision boundary.

The rest of the section focuses on logistic regression mod-
els, however, as our experimental results illustrate, the obser-
vations extend to complex nonlinear models as well.

The impact of the data input norms First notice that the
norm ‖x‖ of a sample x strongly influences the quantities
U1 and U2, as already observed by Corollary 1. This aspect
is further illustrated in Figure 5 (left), which shows a strong
correlation between the input norms and the expected model
sensitivity. Thus, samples with higher input norms may have
a nontrivial impact to the model sensitivity and, in turn, to
its unfairness.

Next, the following proposition sheds light on the relation
between the norm of a sample x and its associated gradient
norm ‖∇?

θ
`(f̄?
θ
(x), y)‖.
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Figure 5: Credit-card data: Relation between input norms
and model sensitivity (left) and Spearman correlation be-
tween input norms and excessive risk (right).



Proposition 1. Let f̄θ be a logistic regression binary clas-
sifier with cross entropy loss function. For a given sample
(x, y) ∈ D̄, the gradient∇?

θ
`(f̄?
θ
(x), y) is given by:

∇?
θ
`(f̄?
θ
(x), y) = (f̄?

θ
(x)− y

)
⊗ x,

where ⊗ expresses the Kronecker product.
Recall that gradient norms have a proportional effect on the
upper bound of the excessive risk (Equation (10)). Thus, the
relation above sheds further light on the weight that samples
with large norms may have in controlling their associated
excessive risk, as shown in Figure 5 (right), which shows
the Spearman correlation between these two quantities.

Finally, the discussion notes that the smoothness param-
eter βx captures the local flatness of the loss function at a
point x. A derivation of βx for logistic regression classifier
is provided below.
Proposition 2. Consider again a binary logistic regression
as in Proposition 1. The smoothness parameter βx for a
sample x is given by (Shi et al. 2021): βx = 0.25‖x‖2.
The above clearly illustrates the relationship between input
norms ‖x‖ and the smoothness parameters βx.

To summarize, propositions 1 and 2 illustrate that indi-
viduals x with large (small) input norms tends to have large
(small) gradient norm and smoothness parameters, thus con-
trolling the model sensitivity and, in turn, the excessive risk
R(x). An extended analysis of the above claim is provided
in Appendix 13.

The impact of the distance to decision boundary As
mentioned in the previous section, the flipping probability
p↔x associated with a sample x ∈ D̄ directly controls the
model sensitivity E[‖

?

θ −θ̃‖]. Beside the discussed factors,
this section further studies which characteristics of sample
x can causes it to have a high flipping probability.

Intuitively, samples close to the decision boundary are
associated to small ensemble voting confidence and vice-
versa. To illustrate this intuition the paper borrows the con-
cept of closeness to the decision boundary from Tran, Dinh,
and Fioretto (2021).
Definition 4 (Closeness to decision boundary). Let fθ be a
C-classes classifier trained using data D̄ with its true labels.
The closeness to the decision boundary s(x) is defined as:

s(x)
def
= 1−

C∑
c=1

fθ,c(x)2,

where fθ,c denotes the softmax probability for class c.
The above, (together with Theorem 5 of (Tran, Dinh, and
Fioretto 2021)) illustrate that large (small) s(x) values are
associated to close (distant) projections of point x to the
model decision boundary. The concept of closeness to de-
cision boundary gives a way to indirectly quantify the flip-
ping probability of a sample. Empirically, the correlation be-
tween the distance to decision boundary of sample x and its
flipping probability p↔x is illustrated in Figure 6 (left). The
plots are once again generated using a neural network with
nonlinear objective and the relation holds for all datasets an-
alyzed. Notice the strong positive correlation between these
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Figure 6: Credit-card data: Spearman correlation between
the closeness to decision boundary s(x) and the flipping
probability p↔x (left) and relation between input norms and
excessive risk (right).

two quantities. The plot indicates that the samples that are
close to the decision boundary will have a higher probability
of “flipping” their label, thus resulting in a worse excessive
risk. Finally, the proportional effect of the flipping probabil-
ity on the excessive risks is illustrated in Figure 6 (right).

8 Mitigation solution
The previous sections highlighted the presence of several al-
gorithmic and data-related factors which affect the disparate
impact of the student model. A common role of these factors
was their effects on the model sensitivity E‖

?

θ −θ̃‖ which,
in turn, is related with the excessive risk of different groups,
whose difference we would like to minimize.

Motivated by these observations, this section proposes a
mitigating strategy that aims at reducing the sensitivity of
the private model parameters. To do so, the paper exploits
the idea of using soft labels (as defined below). When us-
ing the traditional voting process (denoted hard labels in
this section), in low voting confidence regimes a small noise
perturbation may significantly affect the result of the voting
scheme. Consider, for example the case of a binary classi-
fier where for a sample x, k/2 + 1 teachers vote for label
0 and k/2 − 1 for label 1 for some even ensemble size k.
When a perturbations are induced to these counts to guaran-
tee privacy, the process can report the incorrect label (ŷ = 1)
with high probability. As a result, the private student model
parameters obtained from private training with hard labels
can be sensitive to the noisy voting, and may deviate signif-
icantly from the non-private one. This issue can be partially
addressed by the introduction of soft labels:
Definition 5 (Soft label). The soft label of a sample x is:

α(x) =

(
#c(T (x))

k

)C
c=1

and their privacy-preserving counterparts:

α̃(x) =

(
#c(T (x)) +N (0, σ2)

k

)C
c=1

.

To exploit soft labels, the training step of the student
model is altered to use the following loss function:

`′(f̂θ(x), α̃) =

C∑
c=1

α̃c`(fθ(x), c), (11)
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Figure 7: Training privately PATE with hard and soft labels: Model sensitivity at varying of the privacy loss (left) on Parkinson
dataset and excessive risk at varying of the privacy loss for Bank (middle) and Parkinson (right) datasets.

which can be considered as a weighted version of the origi-
nal loss function `(f̂θ(x), c) on class label c, whose weight
is its confidence α̃c. Note that `′(f̂θ(x), α̃) = `(f̂θ(x))
when all teachers in the ensemble chose the same label. The
privacy analysis for this model is similar that of classical
PATE and is reported in Appendix 11.

The effectiveness of this scheme is demonstrated in Fig-
ure 7. The experiment settings are reported in details in the
Appendix and reflect those described at the end of Section 5.
The left subplot shows the relation between the model sen-
sitivity E

[
‖

?

θ −θ̃‖
]

at varying levels of the privacy loss ε
(dictated by the noise level σ). Notice how the student mod-
els trained using soft labels reduce their sensitivity to privacy
when compared to the counterparts that use hard labels.

The middle and right plots of Figure 7 illustrate the ef-
fects of the proposed mitigating solution in terms of util-
ity/fairness tradeoff on the private student model. The top
subplots illustrate the group excessive risks R(D̄←0) and
R(D̄←1) associated with minority (0) and majority (1)
groups while the bottom subplot illustrate the accuracy of
the model, at increasing of the privacy loss ε. Notice how
soft labels can reduce the disparate impacts in private train-
ing (top), which consistently reduces the difference in exces-
sive risks between two groups, suggesting an improvement
in fairness. Finally, notice that while fairness is improved
there is seemingly no cost in accuracy. On the contrary, us-
ing soft labels produces comparable or better models to the
counterparts produced with the hard labels.

Additional experiments, including illustrating the behav-
ior of the mitigating solution at varying of the number k of
teachers are reported in the appendix and the general mes-
sage is consistent with what described above. Finally, an im-
portant benefit about the proposed solution is that it does
not require the protected group information (a ∈ A) to be
part of the training data. Thus, it is applicable in challenging
situations when it is not feasible to collect or use protected
features (e.g., under GDPR (Lahoti et al. 2020)).

These results are significant. They suggest that this miti-
gating solution can be an effective strategy for improving the
disparate impact of private model ensembles without sacri-
ficing accuracy.

9 Discussion
We note that the proposed mitigating solution relates to
concepts explored in robust machine learning. In particu-
lar, Papernot et al. (2016) noted that training a classifiers
with soft labels can increase its robustness against adversar-
ial samples. This connection is not coincidental. Indeed, the
model sensitivity is affected by the voting outcomes of the
teacher ensemble (Theorems 1 and 3). Similarly to robust
ML models being insensitive to input perturbations, strongly
agreeing ensemble will be less sensitive to noise and vice-
versa. This observation raises a question about the connec-
tion of robustness and fairness in private models (Yurochkin,
Bower, and Sun 2019). We believe that this connection is an
important direction for the private ML community.

Finally, we notice that the use of more advanced voting
schemes, such as the interactive GNMAX (Papernot et al.
2018), may produce different fairness results. While this is
an interesting avenue for extending our analysis, sophisti-
cated voting schemes may introduce sampling bias (e.g., in-
teractive GNMAX may exclude samples with low ensemble
voting agreement). Such bias may trigger some nontrivial
unfairness issues on its own.

10 Conclusions
This work was motivated by the recent observations regard-
ing the effects of differential privacy to the disparate im-
pacts of machine learning models. The paper introduced a
notion of fairness that relies on the concept of excessive
risk and analyzed this notion in the Private Aggregation of
Teacher Ensembles (PATE) (Papernot et al. 2018), an impor-
tant privacy-preserving machine learning framework used in
semisupervised settings or when one wishes to protect the
data labels. This paper isolated key components related with
the algorithms parameters and the public training data char-
acteristics which are responsible for exacerbating the dis-
parate impacts, it studied the factors affecting these compo-
nents, and introduced a mitigation solution.

Given the increasing presence of privacy-preserving data-
driven algorithms in consequential decisions, we believe that
this work may represents an important and broadly applica-
ble step toward understanding the sources of disparate im-
pacts observed in differentially private learning systems.



References
Bagdasaryan, E.; Poursaeed, O.; and Shmatikov, V. 2019.
Differential privacy has disparate impact on model accu-
racy. In Advances in Neural Information Processing Sys-
tems, 15479–15488.
Blake, C.; and Merz, C. 1988. UCI repository of machine
learning databases.
Carcillo, F.; Le Borgne, Y.-A.; Caelen, O.; Kessaci, Y.; Oblé,
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