
SCOTCH: An Efficient Secure Computation Framework for Secure Aggregation

Yash More1, Prashanthi Ramachandran2, Priyam Panda1, Arup Mondal 1, Harpreet Virk1,
Debayan Gupta1

1 Ashoka University
2 Brown University

yash.more@alumni.ashoka.edu.in, pramach3@cs.brown.edu, priyam.panda asp22@ashoka.edu.in,
arup.mondal phd19@ashoka.edu.in, harpreet.virk@alumni.ashoka.edu.in, debayan.gupta@ashoka.edu.in

Abstract

Federated learning enables multiple data owners to jointly
train a machine learning model without revealing their private
datasets. However, a malicious aggregation server might use
the model parameters to derive sensitive information about
the training dataset used. To address such leakage, differential
privacy and cryptographic techniques have been investigated
in prior work, but these often result in large communication
overheads or impact model performance. To mitigate this cen-
tralization of power, we propose SCOTCH, a decentralized m-
party secure-computation framework for federated aggrega-
tion that deploys MPC primitives, such as secret sharing. Our
protocol is simple, efficient, and provides strict privacy guar-
antees against curious aggregators or colluding data-owners
with minimal communication overheads compared to other
existing state-of-the-art privacy-preserving federated learn-
ing frameworks. We evaluate our framework by performing
extensive experiments on multiple datasets with promising re-
sults. SCOTCH can train the standard MLP NN with the train-
ing dataset split amongst 3 participating users and 3 aggre-
gating servers with 96.57% accuracy on MNIST, and 98.40%
accuracy on the Extended MNIST (digits) dataset, while pro-
viding various optimizations.

Introduction
Standard machine learning environments often rely on large
amounts of sensitive data to achieve a high level of per-
formance (Halevy, Norvig, and Pereira 2009). However,
preparing a central repository of data is laborious, mak-
ing secure-collaborative training expensive. Outsourcing the
data to a central server that performs model training for
the users is a potential solution, but is often not feasible
in privacy-sensitive settings. Secure aggregation of data us-
ing multiparty computation frameworks (MPC) (Yao 1982;
Mood et al. 2016; Perry et al. 2014; Di Crescenzo et al. 2014;
Gupta et al. 2016; Lindell 2020; Goldreich 1998; Goldreich,
Micali, and Wigderson 2019) has been explored in recent
works, but they significantly impact framework efficiency
due to added computational overheads (Phong et al. 2018).
Moreover, centralized aggregation creates a single point of
failure in the framework that can potentially compromise the
security and privacy of the training data if the server is ma-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

licious, or prone to adversarial attacks by colluding partici-
pants (Chen et al. 2021; Kairouz et al. 2021).

A recently proposed alternative for privacy-preserving
training, without data outsourcing, is Federated Learning
(FL) (McMahan et al. 2016). FL has emerged as a promis-
ing approach to collaboratively train a model by exchang-
ing model parameters with a central aggregator (or server),
instead of the actual training data. However, parameter
exchange may still leak a significant amount of private
data (Zhu, Liu, and Han 2019). Several approaches have
been proposed to overcome this leakage problem based on
differential privacy (DP) (Shokri and Shmatikov 2015; Pa-
pernot et al. 2018), MPC (Bonawitz et al. 2017; Ryffel et al.
2018), HE (Truex et al. 2019), etc. While DP-based learn-
ing aims to mitigate inference attacks, it significantly de-
grades model utility as the training of accurate models re-
quires high privacy budgets (Jayaraman and Evans 2019).
Cryptographic techniques provide improved privacy protec-
tion but remain too slow for practical use due to the exten-
sive cryptographic operations. Hence, there arises a need for
a secure, decentralized FL framework that protects user pri-
vacy, while allowing seamless training of ML models. This
requires strong cryptographic protection of the intermediate
model updates during the model aggregation and the final
model weights.

In this work, we propose SCOTCH, a practical framework
that enables secure m-party aggregation in a distributed n-
server setting. It provides end-to-end protection of the par-
ties’ training data, intermediate model weights, and the final
resulting model by combining secure multiparty computa-
tion (MPC) primitives based on secure outsourced compu-
tation and secret sharing to enable decentralized FL. Our
contributions have been described in further detail in the fol-
lowing section.

Our Contributions
In this paper, we introduce a one-of-its-kind framework for
privacy-preserving federated learning with primitives from
conventional machine learning and multiparty computation
(MPC). Specifically,
• We propose SCOTCH, a simple, fast, and efficient fed-

erated learning framework that allows for decentralized
gradient aggregation using secure outsourced computa-
tion and secret sharing while ensuring strict privacy guar-



antees of the training data (Mohassel and Zhang 2017;
Wagh, Gupta, and Chandran 2019).

• We evaluate the efficiency of our proposed secret shar-
ing-based FL protocol against existing state-of-the-art
frameworks. To the best of our knowledge, SCOTCH is
the only approach for decentralized privacy-preserving
FL with the least possible cryptographic computational
overheads – only O(2mn) crypto-related operations re-
quired in each training round, where m is the number of
participants and n is the number of aggregators (See Ta-
ble 1).

• We implement SCOTCH and perform extensive experi-
ments on multiple standard datasets such as MNIST, EM-
NIST, and FMNIST with promising results: SCOTCH has
efficiency improvements both in training time and com-
munication cost while providing similar model perfor-
mance and privacy guarantee as other approaches.

For ease of access, all of our code and experiments are
available at: https://github.com/arupmondal-cs/SCOTCH.

Technical Background
Federated Learning. FL (McMahan et al. 2016) is a dis-
tributed ML approach that enables model training on a large
corpus of decentralized data with myriad participants. It is
an example of the more general approach of “bring code to
data, not data to code”. In FL, each party trains a model
locally and exchanges only model parameters with an FL
server or aggregator, instead of the private training data.

The participants in the training processes are parties and
the FL server, which is a cloud-based distributed service.
Devices agreement to the server that they are ready to run
an FL task for a given FL population. An FL population
is specified by a globally unique name which identifies the
learning problem, or application, which is worked upon. An
FL task is a specific computation for an FL population, such
as training to be performed with given hyperparameters, or
evaluation of trained models on local device data. After fin-
ishing the local computation on its local dataset then each
device updates the model parameters (e.g. the weights of a
neural network) to the FL server. The server incorporates
these updates into its global state of the global model.

Secure Multiparty Computation. Secure multiparty
computation (MPC) (Yao 1982; Mood et al. 2016; Perry
et al. 2014; Di Crescenzo et al. 2014; Gupta et al. 2016; Lin-
dell 2020; Goldreich 1998; Goldreich, Micali, and Wigder-
son 2019) is the universal cryptographic functionality, al-
lowing any function to be computed obliviously by a group
of mutually distrustful parties. There exist a number of
different techniques for MPC (e.g., garbled circuits, func-
tional encryption, and homomorphic encryption, etc.). In
this work, we have considered MPC based on secret shar-
ing (Shamir 1979).

Secret Sharing. In cryptography, secret sharing (Shamir
1979; Blakley 1979) refers to the process of splitting a secret
among n parties such that each party does not learn anything
about the whole secret from the share it holds. The secret
can be reconstructed only if a certain minimum number of

parties, greater than or equal to a threshold, t, combine their
shares. The scheme is known as the (t, n) threshold scheme
or t-out-n secret sharing. In this work, we use additive secret
sharing, which uses addition as the way to combine shares.
We use the notation [a]j to denote the jth share of a secret
a.

Proposed Framework
In this section, we describe the proposed framework
SCOTCH, an efficient distributed secure-computation ap-
proach for secure outsourced aggregation based on MPC
primitives. The distributed federated averaging algorithm
has been described in Algorithm 2. Algorithm 1 briefly de-
scribes one iteration of our protocol. The steps given in this
algorithm have been illustrated in Figure 1.

Threat Model
We assume a passively secure threat model. A passive
(honest-but-curious) adversary follows the protocol specifi-
cations but may try to learn information about the private
input data by inspecting the shared inputs. Both the par-
ticipants, data owners (or clients), and the aggregators (or
servers) are honest-but-curious. SCOTCH ensures that ag-
gregators (collude with any subset of participants and aggre-
gators) can’t learn any information about the private inputs
of the honest participants. Similarly, it also ensures that any
subset of colluding participants cannot learn any information
about the private inputs or outputs of the honest participants
by inspecting the messages exchanged with the aggregators
or the final model. We also assume any encryption broad-
cast to the network in Algorithm 1 is re-randomized to avoid
leakage about parties’ confidential data by two consecutive
broadcasts. We omit this operation in Algorithm 1 for clarity.
Finally, attacks that aim to create denial-of-service attacks
or inject malicious model updates are beyond the scope of
this short paper.

SCOTCH Framework
We assume a set of n honest-but-curious aggregators, S and
a set ofm clients, C, where each client Ci for i ∈ {1, · · · ,m}
holds its own private datasetDi. We defer more details about
the threat model and security of the framework to ‘threat
model’ and ‘privacy guarantees’ section. The clients in C
agree upon a model architecture, NNarch, for local train-
ing prior to the runtime of the framework. The underly-
ing concept in this framework is n-out-of-n-additive-secret-
sharing-based MPC, which provides protocols for n aggre-
gators and is secure against a passive adversary that corrupts
at most m− 1 clients.

Local Training. At the beginning of every iteration, the
function local training is invoked by client Ci in C
with input Di. This function allows clients to train lo-
cal models on their private datasets using the pre-decided
model architecture, NNarch. In the first iteration, initial
weights are sampled and stored in w. For subsequent iter-
ations, the aggregated weights from the previous iteration
are used as initial weights. Each client samples a randomly-
permuted (without replacement) subset d from the dataset



Di in each iteration. Functions permute indices and
choose subset help with the same. In each iteration,
each client trains a model on NNarch with inputs w and d.
The clients then split the model weights into n-out-of-n ad-
ditive secret shares by invoking split secret shares.
These shares are then sent to the n aggregators.

Secure Aggregation. Having received a total of m shares
from clients in C, each server Sj for {1, · · · , n} adds its local
shares and divides the sum by the total number of aggrega-
tors to obtain the value σj by invoking federated sum.
One can observe that σj is an n-out-of-n additive secret
share of the federated average of the local models of the
clients. Each server then sends σj to clients in C so that they
can obtain the final model.

Computing the Final Model. Having obtained additive
secret shares of the federated average from the n aggre-
gators, each client locally adds up the shares to obtain the
federated average of their models by invoking the function
compute final model. Clients set the value of vari-
able w as the federated average obtained in this iteration.
If the current iteration is the final one, w is returned as
the final output. If not, w is used as the initial weights in
local training for the subsequent iteration.

To enable seamless integration between machine learning
primitives (which generally use floating-point), and MPC
primitives (which generally use integers), we use integer
ring arithmetic in our implementation. To enable conver-
sions between the float and integer realms, we use functions
float to int, int to float, and truncate based
on primitives provided in (Mohassel and Zhang 2017). After
training its local model, each client embeds its weights onto
the integer ring by invoking float to int1. The rest of
the operations are performed in the integer ring realm. At
places where two values in the integer ring are multiplied,
the product is truncated by invoking truncate. Finally, at
the end of every iteration, the aggregated weights are con-
verted back to float by invoking int to float in order to
facilitate any further local training on them.

Figure 1: Schematic Diagram illustrating Algorithm 1.

1float to int converts a floating-point value into an l-bit
integer by allocating lx bits to the integer part, lf bits to the frac-
tional part, and 1 bit to the sign of the value, such that l =
lx + lf + 1. Note that lf represents the maximum precision of
the value. Refer to (Wagh, Gupta, and Chandran 2019) for further
details.

Algorithm 1: Secure Outsourced Aggregation

Input: Client Ci for i ∈ {1, · · · ,m} holds its private
dataset Di.
Output: Client Ci for i ∈ {1, · · · ,m} obtains the final
aggregated global model, Magg.

1. Client Ci for i ∈ {1, · · · ,m} trains local model Mi

on a random subset of its private dataset Di. Note
that all the clients use the same model architecture.

2. Client Ci for i ∈ {1, · · · ,m} creates n additive se-
cret shares of its model Mi and sends each share
[Mi]j for j ∈ {1, · · · , n} to server Sj .

3. Server Sj for j ∈ {1, · · · , n} adds up the received
shares from all clients and divides the sum by n to
obtain σj and sends σj to all the clients.
Each client locally computes Magg =

∑n
j=1(σj).

Algorithm 2: SCOTCH Framework

Input: Client Ci in C possesses private dataset Di for
i ∈ {1, · · · ,m}. iter := the total number of global it-
erations for aggregation len(Di) represents the number
of data points in the dataset Di. n is the total number
of aggregators.
Output: Clients obtain the final aggregated model
stored in w.

- foreach k ∈ {1, · · · , iter}
- foreach i ∈ {1, · · · ,m}

- local training(Ci, Di);

- Procedure local training (Ci, Di):
- If(k == 1)
- w ← random init(); // randomly sample initial

weights for n.

- d =permute indices(Di);
- d =choose subset(d, len(Di) / iter);
- Wi ← train(w, d);
- Mi ← float to int(Wi);
- {[Mi]1, · · · , [Mi]n} ←
split secret shares(Mi); // split the

model into n-out-of-n additive secret shares.

- foreach j ∈ {1, · · · , n}
- federated sum(Sj , [Mi]j);

- Procedure (Sj , {[M1]j , · · · , [Mm]j}):
- σj ←

∑m
i=1([Mi]j)× float to int(1/n);

- σj ← truncate(σj);

- foreach i ∈ {1, · · · ,m}



- compute final model(Ci, σj);

- Procedure (σ1, · · · , σn):
- Magg ←

∑n
j=1(σj);

- w ← int to float(Magg);

- return w;

Communication Complexity Table 1 describes the com-
plexity of the secure aggregation protocol (refer to Algo-
rithm 2). Since SCOTCH is a secure aggregation frame-
work, the complexity of functions local training and
compute final model can be considered offline. As a
result, we only consider federated sum() as the online
phase of the protocol.

Table 1: Summary of the complexity of Algorithm 2.

Complexity Data Owners Aggregator Servers
Computation O(2mn) O(mn)
Communication O(n) O(m)
Storage O(m) O(n)

Privacy Guarantees
SCOTCH achieves data privacy guarantees under a semi-
honest adversary model with any subset of colluding ag-
gregators. SCOTCH’s infrastructure is designed using multi-
input secret sharing-based MPC protocol to calculate the
federated average of model gradients shared by participat-
ing clients. Private training data is not sent – participating
entities get split “shares” of model gradients, or the gener-
ated averaged model, neither of which can be used to recon-
struct sensitive information about the training dataset used.
The security of these shares is guaranteed by standard MPC
theorems (Goldreich 1998), and since the actual computa-
tions performed within the MPC setup (which can perform
arbitrary computations and is agnostic in that sense).

Experimental Evaluation
Implementation Details
We simulate SCOTCH using socket, a low-level network-
ing interface that can be accessed using Python. We rely on
the Tensorflow library for the training and inference of ma-
chine learning models. All our experiments are performed
on a local machine – a Linux machine with Intel i7-9700K
CPU@3.60 GHz and GeForce RTX 2070 GPU with 32 GB
RAM. All clients and servers are assumed to be running in-
dependent nodes and are connected via a virtual network.

Dataset and Model Configuration
MNIST (MNIST). The MNIST (MNIST) dataset com-
prises 60,000 handwritten digit character images, along with
10,000 testing images. The data is pre-processed by resiz-
ing each image, and one-hot encoding the labels. Each client
uses a three-layer Multi-layered Perceptron to train on their

local datasets. The architecture of the MLP is outlined in
Figure 2.

EMNIST (EMNIST). The Extended MNIST (dig-
its) (EMNIST) dataset contains 240,000 handwritten digit
character images and 40,000 images for training and testing
purposes respectively. The data is preprocessed by resizing
each image, and one-hot encoding the labels. We use the
same MLP architecture as used in MNIST, to train each
local model.

FMNIST (FMNIST). Fashion-MNIST (FMNIST) is a
dataset of Zalando’s article images that contains 60,000
training images and 10,000 testing images. The data is pre-
processed by resizing each image, and one-hot encoding the
labels.

Figure 2: Multilayer Perceptron (MLP) architecture used
across different experiments in SCOTCH.

Experimental Overview
SCOTCH’s framework incorporates secure aggregation via
secret outsourced computation. Each client takes part in
federated learning by (a) locally training on their private
data, and (b) sharing their gradients with servers via secret-
sharing. Each server receives partial shares from the clients,
which it aggregates and propagates back to all clients. This
allows each client to recompute the global model gradients
by averaging the shares received from the server(s).

Experimental Results
We evaluate SCOTCH in terms of three indicators: (a) Per-
formance of the generated model with a different number of
clients and servers, (b) Impact of varying precision while se-
cret sharing on model performance, and (c) communication
complexity (see Table 1).

Performance Analysis. We evaluate SCOTCH’s perfor-
mance on three standard datasets – MNIST, EMNIST, and
FMNIST (refer Dataset and Model Configuration section)



with varying numbers of clients, in a 3-server setting. For
each dataset, we use a three-layer MLP whose architecture
has been outlined in §. We use a standard 70-30 train-test
split, for each dataset, and the training data is equally divided
amongst the clients. Each client locally trains on their indi-
vidual dataset for 3-4 epochs, with a learning rate of 0.01.
The results have been summarized in Table 3.

To test the effects of precision on training our global
model, we compare the results of SCOTCH on MNIST
dataset, with 16 and 32 bits of precision. The test accuracy
comparison between these two is shown in Table 2. To sup-
port decimal arithmetic in an integer ring we use the solution
proposed by (Mohassel and Zhang 2017). As we observe
from our experiments, if we restrict the number of decimal
places to 32 bits, we see a significant improvement in test ac-
curacy as opposed to 16 bits. Therefore, we observe a direct
correlation between the precision of floating-point numbers
involved in network training and the resulting model. To un-
derstand the effects of precision, we trained a centralized FL
server with a constraint – we round each weight update of
the ML model with 32 bits of precision (restricting values up
to 5 decimal places). We observed that there is a consider-
able decrease in model accuracy with decreasing precision.
This underscores the importance of precision while training
machine learning models. We summarize our observations
in Table 4 (for further details, please refer to the Impact of
Precision Length section).

We observe a decrease in accuracy with increasing
number of clients because of the compounding errors in
float to int() and int to float() conversions as
a result of limited precision. These can be offset by an in-
crease in precision. We plan to scale our existing framework
to a larger number of clients and servers with the help of a
reasonable increase in precision size in the near future.

Table 2: SCOTCH’s performance accuracy on
MNIST (MNIST), under 16-bit and 32-bit precision
configuration. The number of global iterations for aggrega-
tion, iter (Algorithm 2) is set to 4. For the accuracy graph,
see Figure 4.

Clients 2 3 4 5
MNIST-16 0.3 0.19 0.113 0.111
MNIST-32 0.975 0.965 0.74 0.53

Table 3: SCOTCH performance accuracy, as evaluated on
three datasets: MNIST, EMNIST, and FMNIST with an in-
creasing number of clients (under 32-bit precision). For the
accuracy graph, see Figure 3.

Clients MNIST EMNIST FMNIST
2 0.975 0.985 0.85
3 0.965 0.984 0.69
4 0.74 0.9 0.53
5 0.53 0.549 0.5

Table 4: Evaluating the performance accuracy of Central-
ized FL (1-server setting) on multiple precision configura-
tions using the MNIST (MNIST) dataset.

Precision 4-bit 8-bit 16-bit 32-bit
Centralized FL 0.09 0.41 0.71 0.85

Figure 3: SCOTCH: Clients vs Performance accuracy on
multiple datasets – MNIST, EMNIST, and FMNIST (3-
server setting).

Figure 4: SCOTCH: Clients vs Performance accuracy on
multiple precision settings (16-bits, 32-bits) on MNIST (3-
server setting).

Impact of Precision Length
Most protocols in secure multiparty computation operate
in integer rings. However, one needs to deal with decimal
numbers while tackling computations in machine learning
algorithms. To mitigate this, we use a mapping between
fixed-point decimals and the integer ring (as used by state-
of-the-art MPC frameworks such as SecureML (Mohassel
and Zhang 2017)). The integer part of the decimal number
is represented by lw bits and the fractional part by lf . To
evaluate the effects of precision on our training and test-



ing accuracy, we replicate the precision settings used in Se-
cureML (Mohassel and Zhang 2017) for logistic and linear
regression. Comparing our tests with SecureML helps us to
understand the effects of precision-length while training dif-
ferent machine learning models. Even though SecureML’s
experiments were restricted to 13–16 bits, they used much
simpler models such as logistic regression and with a sim-
pler dataset – (1000 to 1M samples of the MNIST dataset),
and objective – Binary Classification. Through our experi-
ments we observe that multi-class classification via Multi-
layer Perceptrons on much smaller dataset 70% of 60,000
MNIST images performs better if we increase the preci-
sion (refer to Table 4). One might notice how much of a
difference does precision make on gradient updates while
performing gradient descent using Neural Networks. This
difference plays a role in our experiments as well.

Related Work
The existing privacy-preserving machine learning (PPML)
works focus exclusively on training (generalized) linear
models. They rely on centralized solutions where the learn-
ing task is securely outsourced to a server, notably using
homomorphic encryption (HE) techniques. As such, these
works do not solve the problem of privacy-preserving dis-
tributed ML, where multiple parties collaboratively train an
ML model on their data. To address the latter, several works
propose multi-party computation (MPC) (Yao 1982; Mood
et al. 2016; Perry et al. 2014; Di Crescenzo et al. 2014;
Gupta et al. 2016; Lindell 2020; Goldreich 1998; Goldreich,
Micali, and Wigderson 2019) solutions where several tasks,
such as clustering and regression, are distributed among 2, 3,
or 4 servers (Mohassel and Zhang 2017; Wagh, Gupta, and
Chandran 2019; Patra and Suresh 2020; Ramachandran et al.
2021; Wagh et al. 2021; Riazi et al. 2018; Demmler, Schnei-
der, and Zohner 2015; Mohassel and Rindal 2018; Wagh
et al. 2021). Although such approaches, however, limit the
number of parties among which the trust is split, often as-
sume an honest majority among the computing servers, and
require parties to communicate (i.e., secret share) their data
outside their premises. This might not be acceptable due to
the privacy and confidentiality requirements and the strict
data protection regulations.

A recently proposed alternative for privacy-preserving
training – without data outsourcing – is federated learning
(FL) (McMahan et al. 2016). FL has emerged as a promis-
ing approach to collaboratively train a model by exchanging
model parameters with a central aggregator, instead of the
actual training data. However, parameter exchange may still
leak a significant amount of private data. Several approaches
have been proposed to overcome this leakage problem based
on differential privacy (DP) (Shokri and Shmatikov 2015;
Papernot et al. 2018), MPC (Bonawitz et al. 2017; Ryf-
fel et al. 2018), HE (Truex et al. 2019; Sav et al. 2020),
Trusted Execution Environment (Mondal et al. 2021a,b), etc.
Furthermore, in those settings, the aggregator is a central
player, which also potentially represents a single point of
failure (Kairouz et al. 2021) and due to the extensive use of
cryptographic operations, these frameworks remain too slow
for practical use. Finally, other works combine MPC with

DP techniques to achieve better privacy guarantees (Truex
et al. 2019; Xu et al. 2019; Pettai and Laud 2015). While
DP-based learning aims to mitigate inference attacks, it sig-
nificantly degrades model utility, as training accurate models
requires high privacy budgets (Jayaraman and Evans 2019).
Therefore, a practical distributed privacy-preserving feder-
ated learning approach requires strong cryptographic pro-
tection of the intermediate model updates during the model
aggregation and the final model weights.

Conclusion
We propose SCOTCH, a decentralized m-party, n-server
secure-computation framework for federated aggregation
that utilizes MPC primitives. The protocol provides strict
privacy guarantees against honest-but-curious aggregators
or colluding data-owners; it offers the least communica-
tion overheads compared to other existing state-of-the-art
privacy-preserving federated learning frameworks on stan-
dard datasets. In the near future, we plan to extend this
framework to provide security against malicious servers and
clients, scale it to a larger number of clients and servers, and
finally deploy it via open-source channels for academic and
industrial use-cases.

References
Blakley, G. R. 1979. Safeguarding cryptographic keys. In
1979 International Workshop on Managing Requirements
Knowledge (MARK), 313–318. IEEE.

Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.;
McMahan, H. B.; Patel, S.; Ramage, D.; Segal, A.; and
Seth, K. 2017. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security, 1175–1191.

Chen, H.; Asif, S. A.; Park, J.; Shen, C.-C.; and Bennis,
M. 2021. Robust Blockchained Federated Learning with
Model Validation and Proof-of-Stake Inspired Consensus.
arXiv:2101.03300.

Demmler, D.; Schneider, T.; and Zohner, M. 2015. ABY - A
Framework for Efficient Mixed-Protocol Secure Two-Party
Computation.

Di Crescenzo, G.; Feigenbaum, J.; Gupta, D.; Panagos, E.;
Perry, J.; and Wright, R. N. 2014. Practical and privacy-
preserving policy compliance for outsourced data. In Inter-
national Conference on Financial Cryptography and Data
Security, 181–194. Springer.

EMNIST. 2019. The EMNIST Dataset. https://www.nist.
gov/itl/products-and-services/emnist-dataset. Accessed:
2020-08-01.

FMNIST. 2017. Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms. https:
//www.kaggle.com/zalando-research/fashionmnist. Ac-
cessed: 2020-08-01.

Goldreich, O. 1998. Secure multi-party computation.
Manuscript. Preliminary version, 78.



Goldreich, O.; Micali, S.; and Wigderson, A. 2019. How to
play any mental game, or a completeness theorem for proto-
cols with honest majority. In Providing Sound Foundations
for Cryptography: On the Work of Shafi Goldwasser and Sil-
vio Micali, 307–328.
Gupta, D.; Mood, B.; Feigenbaum, J.; Butler, K.; and
Traynor, P. 2016. Using intel software guard extensions for
efficient two-party secure function evaluation. In Interna-
tional Conference on Financial Cryptography and Data Se-
curity, 302–318. Springer.
Halevy, A.; Norvig, P.; and Pereira, F. 2009. The Unreason-
able Effectiveness of Data. IEEE Intelligent Systems, 24:
8–12.
Jayaraman, B.; and Evans, D. 2019. Evaluating differentially
private machine learning in practice. In 28th {USENIX} Se-
curity Symposium ({USENIX} Security 19), 1895–1912.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; and et al. 2021. Advances and Open
Problems in Federated Learning. arXiv:1912.04977.
Lindell, Y. 2020. Secure Multiparty Computation (MPC).
IACR Cryptol. ePrint Arch., 2020: 300.
McMahan, H. B.; Moore, E.; Ramage, D.; Hampson,
S.; et al. 2016. Communication-efficient learning of
deep networks from decentralized data. arXiv preprint
arXiv:1602.05629.
MNIST. 2010. The MNIST Database. http://yann.lecun.
com/exdb/mnist. Accessed: 2020-08-01.
Mohassel, P.; and Rindal, P. 2018. ABY3: A Mixed Pro-
tocol Framework for Machine Learning. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, 35–52. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450356930.
Mohassel, P.; and Zhang, Y. 2017. Secureml: A system for
scalable privacy-preserving machine learning. In 2017 IEEE
Symposium on Security and Privacy (SP), 19–38. IEEE.
Mondal, A.; More, Y.; Rooparaghunath, R. H.; and Gupta,
D. 2021a. Flatee: Federated Learning Across Trusted Exe-
cution Environments. arXiv preprint arXiv:2111.06867.
Mondal, A.; More, Y.; Rooparaghunath, R. H.; and Gupta,
D. 2021b. Poster: FLATEE: Federated Learning Across
Trusted Execution Environments. In 2021 IEEE European
Symposium on Security and Privacy (EuroS&P), 707–709.
IEEE.
Mood, B.; Gupta, D.; Carter, H.; Butler, K.; and Traynor, P.
2016. Frigate: A validated, extensible, and efficient com-
piler and interpreter for secure computation. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P),
112–127. IEEE.
Papernot, N.; Song, S.; Mironov, I.; Raghunathan, A.; Tal-
war, K.; and Erlingsson, Ú. 2018. Scalable private learning
with pate. arXiv preprint arXiv:1802.08908.
Patra, A.; and Suresh, A. 2020. BLAZE: Blazing Fast
Privacy-Preserving Machine Learning. In NDSS. NDSS.

Perry, J.; Gupta, D.; Feigenbaum, J.; and Wright, R. N. 2014.
Systematizing secure computation for research and decision
support. In International Conference on Security and Cryp-
tography for Networks, 380–397. Springer.
Pettai, M.; and Laud, P. 2015. Combining differential pri-
vacy and secure multiparty computation. In Proceedings
of the 31st Annual Computer Security Applications Confer-
ence, 421–430.
Phong, L. T.; Aono, Y.; Hayashi, T.; Wang, L.; and Moriai,
S. 2018. Privacy-Preserving Deep Learning via Additively
Homomorphic Encryption. IEEE Transactions on Informa-
tion Forensics and Security, 13(5): 1333–1345.
Ramachandran, P.; Agarwal, S.; Mondal, A.; Shah, A.; and
Gupta, D. 2021. S++: A Fast and Deployable Secure-
Computation Framework for Privacy-Preserving Neural
Network Training. arXiv preprint arXiv:2101.12078.
Riazi, M. S.; Weinert, C.; Tkachenko, O.; Songhori, E. M.;
Schneider, T.; and Koushanfar, F. 2018. Chameleon: A hy-
brid secure computation framework for machine learning
applications. 707–721.
Ryffel, T.; Trask, A.; Dahl, M.; Wagner, B.; Mancuso, J.;
Rueckert, D.; and Passerat-Palmbach, J. 2018. A generic
framework for privacy-preserving deep learning. arXiv
preprint arXiv:1811.04017.
Sav, S.; Pyrgelis, A.; Troncoso-Pastoriza, J. R.; Froelicher,
D.; Bossuat, J.-P.; Sousa, J. S.; and Hubaux, J.-P. 2020.
POSEIDON: Privacy-Preserving Federated Neural Network
Learning. arXiv preprint arXiv:2009.00349.
Shamir, A. 1979. How to share a secret. Communications of
the ACM, 22(11): 612–613.
Shokri, R.; and Shmatikov, V. 2015. Privacy-preserving
deep learning. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security,
1310–1321.
Truex, S.; Baracaldo, N.; Anwar, A.; Steinke, T.; Ludwig,
H.; Zhang, R.; and Zhou, Y. 2019. A hybrid approach to
privacy-preserving federated learning. In Proceedings of the
12th ACM Workshop on Artificial Intelligence and Security,
1–11.
Wagh, S.; Gupta, D.; and Chandran, N. 2019. SecureNN:
3-Party Secure Computation for Neural Network Training.
Wagh, S.; Tople, S.; Benhamouda, F.; Kushilevitz, E.; Mit-
tal, P.; and Rabin, T. 2021. FALCON: Honest-Majority Ma-
liciously Secure Framework for Private Deep Learning.
Xu, R.; Baracaldo, N.; Zhou, Y.; Anwar, A.; and Ludwig,
H. 2019. HybridAlpha: An Efficient Approach for Privacy-
Preserving Federated Learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, 13–
23.
Yao, A. C. 1982. Protocols for secure computations. In 23rd
annual symposium on foundations of computer science (sfcs
1982), 160–164. IEEE.
Zhu, L.; Liu, Z.; and Han, S. 2019. Deep Leakage from
Gradients. In Wallach, H.; Larochelle, H.; Beygelzimer, A.;
d'Alché-Buc, F.; Fox, E.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 32, 14774–
14784. Curran Associates, Inc.


