
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

Arup Mondal*, Harpreet Virk∗, Debayan Gupta
Ashoka University

arup.mondal phd19@ashoka.edu.in harpreet.virk@alumni.ashoka.edu.in, debayan.gupta@ashoka.edu.in

Abstract

Federated Learning (FL) enables multiple parties to dis-
tributively train a ML model without revealing their private
datasets. However, it assumes trust in the centralized aggre-
gator which stores and aggregates model updates. This makes
it prone to gradient tampering and privacy leakage by a mali-
cious aggregator. Malicious parties can also introduce back-
doors into the joint model by poisoning the training data or
model gradients. To address these issues, we present BEAS,
the first blockchain-based framework for N -party FL that
provides strict privacy guarantees of training data using gradi-
ent pruning (showing improved differential privacy compared
to existing noise and clipping based techniques). Anomaly
detection protocols are used to minimize the risk of data-
poisoning attacks, along with gradient pruning that is fur-
ther used to limit the efficacy of model-poisoning attacks. We
also define a novel protocol to prevent premature convergence
in heterogeneous learning environments.We perform exten-
sive experiments on multiple datasets with promising results:
BEAS successfully prevents privacy leakage from dataset re-
construction attacks, and minimizes the efficacy of poison-
ing attacks. Moreover, it achieves an accuracy similar to cen-
tralized frameworks, and its communication and computation
overheads scale linearly with the number of participants.

Introduction
Robust Machine Learning (ML) models require large
amount of heterogeneous training data to obtain accurate re-
sults of any practical significance. In most scenarios, this
data is often scattered across mutually distrusting entities
that cannot directly share their secret private data with each
other, or with a centralized aggregator, due to privacy regula-
tions that restrict centralized collection (Sav et al. 2020; Ra-
machandran et al. 2021). Federated Learning (FL) (McMa-
han et al. 2017) enables multiple parties to distributively
learn a shared model without revealing their private data;
each party trains a local model using their own data, and
exchanges only the model gradients with a centralized FL
server or aggregator. The aggregator is responsible for stor-
age and exchange of these gradients. It also periodically
merges them, generally by taking their average, to gener-
ate a new global model that is then used in subsequent lo-

*Corresponding authors, authors ordered alphabetically.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cal rounds for pre-training. The aggregator is thus a cen-
tral player that potentially represents a single point of fail-
ure (Sav et al. 2020).

(Bonawitz et al. 2019) proposed an improved FL frame-
work by designing a hierarchical network of FL aggregators,
each of which controls its own sub-population headed by a
centralized coordinator. Although this reduces the risk of a
malicious aggregator by distributing the task across multi-
ple sub-networks, the architecture is not inherently free from
centralized dependency (Sav et al. 2020).

(Song and Mittal 2020) showed that model gradients can
sometimes unintentionally memorize features from training
data, which can be exploited by a malicious aggregator to re-
construct sensitive information about it. This can be solved
using various cryptographic techniques (Perry et al. 2014;
Zhang et al. 2020; Di Crescenzo et al. 2014; Gupta et al.
2016; Mood et al. 2016), though these significantly impact
the efficiency of the framework (Phong et al. 2018). Differ-
ential privacy (DP) (Dwork 2006) techniques like addition of
noise or clipping of gradients can also be used to limit leak-
age of privacy. However, obfuscating model gradients us-
ing DP techniques often impacts accuracy (Lyu et al. 2020;
Abadi et al. 2016). Moreover, the aggregator cannot examine
the data used for training: malicious parties can train their lo-
cal models using poisoned datasets, or tamper with their gra-
dients, to introduce backdoors into the shared model (Jagiel-
ski et al. 2020; Bagdasaryan et al. 2020). A malicious ag-
gregator can also skew the shared model by biasing contri-
butions of preferred parties (Li et al. 2020). Data poisoning
attacks have been addressed with anomaly detection algo-
rithms such as l-nearest aggregation (Chen et al. 2018) and
Multi-KRUM (Blanchard et al. 2017), where deviation or
performance of updates is evaluated relative to the majority.
However, (Bagdasaryan et al. 2020) demonstrates attacks
where an adversary can use constrain-and-scale techniques
to generate gradients that can evade anomaly detection.

Researchers have investigated eliminating the centraliza-
tion in FL using decentralized frameworks. However, most
of the current work primarily addresses only a subset from -
secure design, byzantine tolerant gradient aggregation, pro-
tection from poisoning attacks, data privacy, client motiva-
tion, fairness guarantees, scalability, and network efficiency.
Currently, only (Chen et al. 2018; Shayan et al. 2018) ad-
dress a majority of these issues, but not all. Moreover, prior

work does not consider the improved privacy protection of-
fered by gradient pruning (Zhu, Liu, and Han 2019), or the
critical issue of premature convergence: the global model
can forget previously learned features if the local models
prematurely converge while training on a large dataset.

We propose BEAS, the first blockchain enabled frame-
work that allows collaborative training and evaluation of
ML tasks in a distributed setting with strict privacy guar-
antees and security against adversarial clients. Our primary
motivation to use blockchain are smart contracts, which can
function as a trusted distributed application and be used for
storage, exchange, and merging of gradients, eliminating
centralized dependence entirely. Using a fully-decentralized
blockchain, BEAS can enable secure FL executions with dif-
ferent types of layered architectures, such as feed-forward
NN and CNN, on datasets that are heterogeneously dis-
tributed amongN parties. Moreover, BEAS is designed to be
scalable with parallel FL models running on the same plat-
form using multi-channel blockchain architecture. This can
be useful in various research and production applications.

Contributions. Our main contributions as follows:

• Blockchain-based framework for decentralized N -party
(unbounded N) FL ensuring strict privacy guarantees of
training data using gradient pruning based DP, and resis-
tance to poisoning attacks.

• Minimize risk of data poisoning using a combination
of protocols to identify adversaries: (i) Multi-KRUM
(Blanchard et al. 2017) is used to guarantee resiliency
from independent adversaries; and (ii) FoolsGold (Fung,
Yoon, and Beschastnikh 2020) is used to identify Sybil
groups.

• Implement and compare various DP techniques (Dwork
2006) to prevent direct leakage of training data from
shared gradients. Our experiments show gradient prun-
ing (GP) is more effective than existing DP techniques:
it prevents reconstruction of training data from shared
model gradients with minimal impact on performance,
and defends against model poisoning. GP has not been
used in prior work for privacy (GP’s primary use: gra-
dient compression). We also evaluate the efficiency of
GP against model-poisoning attacks. To the best of our
knowledge, BEAS is the first approach for decentralized
privacy-preserving FL to use GP for improved differen-
tial privacy, and improved defense against model poison-
ing.

• BEAS is first to explore premature convergence in decen-
tralized FL; we train using small clusters of data to pre-
vent this. We’re also first to support parallel FL collab-
oration on multiple tasks using the same platform with
multi-channel blockchain architecture.

• We perform extensive experiments on multiple datasets
and different NN architectures with promising results:
BEAS achieves training accuracy on par with both –
centralized and non-privacy preserving decentralized ap-
proaches. BEAS can train a 3-layer NN with 64 neurons
per hidden-layer with the training dataset split amongst
20 participating clients on the MNIST (LeCun and Cortes

2010) dataset in 8.73 minutes, and on the Malaria Cell
Image (Rajaraman et al. 2018) dataset in 16.11 minutes.

For ease of access, all of our code and experiments are
available at: https://github.com/harpreetvirkk/BEAS.

Comparative Analysis
We compare BEAS against existing state-of-the-art frame-
works for decentralised FL. BEAS uses multi-channel per-
missioned blockchain to store all model gradients, which
enables rapid scalability, auditability, transparency, and trust
amongst collaborating entities. Differential privacy (Dwork
2006) is used to obfuscate model gradients to prevent leak-
age of sensitive information of private data, and Fools-
Gold (Fung, Yoon, and Beschastnikh 2020) with Multi-
KRUM (Blanchard et al. 2017) is used to provide re-
siliency from adversarial data poisoning attacks (Jagielski
et al. 2020). Gradient pruning is also used to limit the effi-
cacy of model poisoning attacks (Bagdasaryan et al. 2020),
where malicious clients use constrain-and-scale techniques
to evade gradient anomaly detection algorithms such as
Multi-KRUM. Table 1 shows the comparative analysis of
the proposed BEAS framework against other existing frame-
works.

Related Work
Federated learning (FL) (McMahan et al. 2017) has emerged
as a promising approach to collaboratively train a model
by exchanging model parameters with a central aggrega-
tor, instead of the actual training data. However, parame-
ter exchange may still leak a significant amount of private
data. To overcome this leakage problem, several approaches
have been proposed based on differential privacy (Lyu et al.
2020), multi-party computation (Mondal et al. 2022; Xu
et al. 2019; Bonawitz et al. 2019; Ryffel et al. 2018), fully
homomorphic encryption (Truex et al. 2019), Trusted Exe-
cution Environment (Mondal et al. 2021b,a), etc. However,
due to the extensive use of cryptographic operations, these
protocols remain too slow for practical use. Furthermore,
in those settings, the aggregator is a central player, which
also potentially represents a single point of failure (Sav et al.
2020).

To overcome this single point of failure, Shae et al. (Shae
and Tsai 2018) considers a theoretical implementation of
distributed learning and transfer learning with blockchain
smart contracts to design a distributed parallel computing ar-
chitecture, and (Lu, Tang, and Wang 2018) proposes crowd-
sourcing of ML tasks on public blockchains where nodes are
incentivized for contributing their computational resources.
Similarly, (Harris and Waggoner 2019) uses blockchain to
build a public dataset, and smart contracts are used to host
a continuously updated model. However, their focus is not
on sensitive datasets: data needs to be published on the
blockchain (Lu, Tang, and Wang 2018) or is shared freely
amongst nodes for efficient computation (Harris and Wag-
goner 2019).

A number of approaches (Lu, Tang, and Wang 2018;
Yong, Lee, and Wang 2017; Bhattacharya et al. 2019; Idé

Table 1: Comparison between various privacy-preserving federated learning framework.

Framework Comms†
Threat
Model

Privacy
Guarantees

Security
Guarantees Techniques Used

Features and
Code Availability

Participants
A

ggregator
Inference
Training

D
ata Poisoning

M
odel Poisoning

Byzantine A
ttack

H
E TP

SS+A
E FE D
P

Blockchain
Identity

Privacy
Scalability

Statistical H
eterogenity

A
synchronous U

pdates

D
ynam

ic Participants

D
ecentralized

Prem
ature Convergence

Rew
ard

M
echanism

O
pen-Source

BinDaaS (Bhattacharya et al. 2019) 3 rounds � – # # ## # ##### # #####×
PiRATE (Zhou et al. 2020) 3 rounds � – G# G# # # ##### ##### ×
BAFFLE (Ramanan and Nakayama 2020) 3 rounds � – # # ##### ##### ×
Li et al. (Li et al. 2020) 3 rounds � – # # # # ##### # #### ×
LearningChain (Chen et al. 2018) 3 rounds � – G#G# G# #### ##### ×
Biscotti (Shayan et al. 2018) 3 rounds � – G# G# #### ### ×
Truex et al. (Truex et al. 2019) 3 rounds � � # # ## # # ## # #G#######×
Bonawitz et al. (Bonawitz et al. 2019) 3 rounds � � # # ## # ## ## # ###G####×
PySyft (Ryffel et al. 2018) 2 rounds � � # # ## # #### # ########×
FLTrust (Cao et al. 2020) 2 rounds � � G# ##### # # ####×
POSEIDON (Sav et al. 2020) 2 rounds � � ## # #### # ### ##×
Shokri et al. (Shokri and Shmatikov 2015) 1 round � � # # ## # ##### # G# ##G####×
PATE (Papernot et al. 2018) 1 round � � # # ## # ##### # #G#######×
HybridAlpha (Xu et al. 2019) 1 round � � G# G## # ### # ## ###×
BEAS(This Work) 1 round � – #### X

BEAS proposes efficient privacy-preserving federated learning framework in decentralized settings with stronger security and privacy
guarantees. BEAS also provides an extensive evaluation and comparison (1) over the large number of datasets, (2) provides an extensively
compares with related work, (3) provides newer insights for future directions and a number of interesting application.
“HE“ is homomorphic encryption’; “TP” is Threshold-Paillier system; “SS+AE” secret sharing with key agreement protocol and authen-
ticated encryption scheme; “FE” is functional encryption; and “DP” is Differential Privacy.
† includes the number of communication rounds required in one epoch at the training phase between the aggregator and the participant.
� denotes honest party; � denotes semi-honest party; � denotes dishonest party; # denotes does not provides property;
G# denotes partially provides property; denotes provides property.

2018; Majeed and Hong 2019; Wang et al.; Kuo and Ohno-
Machado 2018) try to eliminate the centralized dependence
in a learning framework using blockchain, these are still
subject to poisoning attacks by malicious nodes that train
their local models using poisoned datasets (Jagielski et al.
2020) or tamper with their model gradients (Bagdasaryan
et al. 2020). (Li et al. 2020) presents a committee consensus
mechanism to validate gradients where a leader is selected
based upon performance in the previous round. However,
this can result in poor performance of an honest node when
the distribution of the leader’s dataset is more similar to that
of the malicious node than the honest node. (Song and Mit-
tal 2020) further demonstrates membership inference attacks
that can reveal whether a specific data point was used to train
a given model, and how the models themselves can uninten-
tionally memorize training inputs.

The current state-of-the-art for decentralized FL frame-

works (Shayan et al. 2018; Chen et al. 2018) tries to elim-
inate the poisoning attacks, inference attacks, and member-
ship attacks by using the several cryptographic techniques.
However, due to the extensive use of cryptographic schemes,
these frameworks remain too slow for practical use. The
main advantage BEAS has over these approaches is the com-
munication efficiency, and stronger data privacy and secu-
rity guarantees (see Table 1). The existing approaches need
more than one round of communication in the local model
aggregating phase, BEAS only incurs a single round. Hence
BEAS can be used to train machine learning models faster as
demonstrated in the experimental section.

Background and Preliminaries
Federated Learning
Federated learning (FL) (McMahan et al. 2017) is a dis-
tributed machine learning approach that enables collabora-

tive model training on decentralized data. The training setup
comprises multiple clients with private datasets that want to
collaboratively train a shared global model, but do not wish
to expose their secret private dataset to other participating
clients (Yang et al. 2019). To do so, every client trains a
model locally with their own data, and exchanges only the
model parameters with an FL aggregator instead of directly
sharing the private training data. The aggregator merges the
received local gradients (generally by averaging) to gener-
ate the new global model, which is then sent back to all the
participants to use as a pre-training model for the next it-
eration of local training. The process repeats until desired
performance is achieved, or ad infinitum.

Blockchain
Blockchain is a decentralized immutable ledger of records,
called blocks, that are sequentially linked using cryptogra-
phy and maintained across a network of presumably dis-
trustful peers (Narayanan et al. 2016; Nakamoto 2009). Ev-
ery peer maintains a copy of the ledger, eliminating the de-
pendency on a centralized authority. Blockchains typically
allow execution of programmable scripts. Crypto curren-
cies such as Bitcoin use these scripts to validate transac-
tions (Nakamoto 2009). HyperLedger Fabric (Androulaki
et al. 2018) extends this capability with the concept of
smart contracts that can function as a trusted decentralized
application (DApp) (Androulaki et al. 2018). In the con-
text of decentralized FL, smart contracts can be used for
storage, exchange, and merging of model gradients, replac-
ing the dependence on a centralized aggregator. We imple-
ment BEAS using HyperLedger Fabric (Androulaki et al.
2018), which is an open source enterprise-grade permis-
sioned blockchain framework, for the following reasons: (a)
permissioned blockchain architecture, (b) easily scalable, (c)
multi-channel blockchain design, (d) transaction level con-
sensus, (e) no crypto-currency requirement, and (f) no proof-
of-work/stake.

HyperLedger Fabric (Androulaki et al. 2018) is an open
source enterprise-grade permissioned blockchain frame-
work. At a high level, it is comprised of the following modu-
lar components (Maheshwari 2018; Androulaki et al. 2018):

1. Anything that can have value, state, and ownership are
called Assets, and are represented as a set of key-value
pairs.

2. Ledger records the state and ownership of an asset at a
given point in time, as well as a log history that records
every transaction.

3. Smart contracts (or chaincode) is software that com-
prises the business logic of the framework; that is, it de-
fines the assets and the applicable transaction functions.

4. Endorsing Peers are a fundamental component of the en-
tire framework. They host and access the ledgers, en-
dorse transactions, interface with applications, and exe-
cute smart contracts within a secure container environ-
ment (e.g. Docker) for isolation.

5. Endorsement policy defines the necessary and sufficient
conditions for a valid transaction endorsement.

6. Channels are logical structures formed by a collection of
participating peers, allowing a group of peers to create a
separate ledger of transactions.

7. Membership service provider (MSP) is responsible for
associating entities in the network with cryptographically
generated identities.

8. Ordering service packages transactions into blocks, and
establishes consensus on the order of transactions. It
guarantees the delivery of transactions in the network us-
ing a peer-to-peer gossip protocol.

We select Fabric over other blockchain platforms for
BEAS due to the following reasons (Sharon and Gari 2018;
Androulaki et al. 2018):

Permissioned blockchain: Anyone can join public
permission-less blockchains networks, including anony-
mous and pseudonymous users. Fabric’s permissioned
blockchain design requires all participants to have crypto-
graphically generated anonymous identities, which is useful
in our case as malicious parties can be removed from the
network when their adversarial intent is detected.

Scalability: Most public blockchains require all the nodes
on the network to process transactions, which results in low
transaction throughput and impacts scalability. In Fabric,
network designers can plug in the requisite nodes as per their
immediate requirements, making the framework highly scal-
able.

Multi-Channel: The need for data partitioning on the
blockchain is essential for most business use-cases due to
competitiveness, protection laws, and regulation on confi-
dentiality of personal data. In Fabric, Channels allow for
data to go to only the parties that need to know. In our case,
we use multi-channel blockchain to facilitate parallel col-
laboration with multiple models on the same platform by
setting up each channel with its own ML task, and a sep-
arate blockchain ledger to store the shared model gradient
blocks.

Transaction Consensus: While most blockchain frame-
works require consensus on a ledger state before transaction
approval, Fabric relies on a transaction level consensus; in
other words, the entire block doesn’t require validation be-
fore being approved, but only the transaction.

No Crypo-Currency required: Public blockchain frame-
works like Ethereum (Wood 2014) require crypto-currencies
to execute chaincode functionality, which is redundant in our
use case. Fabric can be used without a cryptocurrency.

No Proof of work/stake: Fabric does not depend upon
miners working day and night to solve problems for block
validation, which requires lots of computing power and is
energy-intensive.

Differential Privacy
Differential privacy (Dwork 2006) can be used to ensure that
the presence (or absence) of any given element in a dataset
does not result in the generation of vastly different model
gradients (which could potentially be used to reveal private
information from shared model gradients in FL). Differen-
tial privacy in the context of privacy-preserving FL, is de-
fined in Definition 0.1.

Definition 0.1 (Differential Privacy (Dwork 2006)) A
randomized function K gives ε−differential privacy if for
all model gradients G1 and G2, generated by training on
datasets D1 and D2 differing on at most one element, the
probability of function K resulting in an output S on G1 is
close to the probability of function K resulting in the same
output S on G2 as follows:

Pr[K(G1) ∈ S] ≤ exp(ε)× Pr[K(G2) ∈ S]

where all S ⊆ Range(K).

Existing work majorly relies on output perturbation, by
adding noise or clipping the norm of the gradients, for differ-
entially private sharing of model gradients (Lyu et al. 2020;
Shayan et al. 2018; Abadi et al. 2016; Balle and Wang 2018):

Addition of Noise: When the query is a function f , and
the database is X , the true answer is the value f(X). The
mechanism K adds appropriately chosen random noise to
the true answer to produce what we call the response (Dwork
2006). Generally, a Gaussian or Laplace distribution is used
for generating the noise for gradient perturbation.

Gradient Clipping: Gradient value clipping involves clip-
ping the derivatives of the loss function to have a given value
if a gradient value is less than a negative threshold, or more
than the positive threshold (Jason Brownlee 2019).

Gradient Pruning: In gradient pruning, gradients with
small magnitudes are pruned to zero. The sparsity in the
gradients increases as more and more gradient values are
pruned, making attacks on data privacy hard (Tsuzuku,
Imachi, and Akiba 2018; Lin et al. 2020).

BEAS Overview
BEAS aims to achieve secure and efficient N -party machine
learning while ensuring strict privacy guarantees that pre-
vent leakage of sensitive information from shared model
gradients, as well as ensure resiliency from adversaries.
We consider a setting where N mutually distrustful clients
C1, C2... CN , that hold private datasets D1,D2... DN respec-
tively, want to collectively train a shared global modelMG
without exposing their secret private dataset Di to other
participants. This need for collaboration arises because a
model trained only on an individual’s data would exhibit
poor performance, but a model trained by all participants
will have near-optimal performance (Shayan et al. 2018;
Yang et al. 2019). We also assume that the NN training pa-
rameters are known to all clients: the model architecture,
hyper-parameters, optimization algorithm, and the learning
task of the system (these can be requested from the endors-
ing peers). We target horizontal learning, where every user
contributes data containing the same feature space, i.e. data
with same columns, but different/overlapping rows.

Threat Model
We assume curious and colluding clients, who may collude
to try to acquire sensitive information from other clients’
private training datasets by inspecting the model gradients
that are publicly published on the shared ledger. Moreover,
clients may be adversarial, and contribute poisoned updates

to introduce backdoors into the shared model. However, col-
luding clients cannot gain influence without acquiring suffi-
cient stake. The adversary may control more than one client,
as in Sybil attacks (Douceur 2002), with the intent to take
control of the blockchain consensus by acquiring a major-
ity stake (by creating false identities). However, we assume
that they can not control more than f clients out of N to-
tal clients, when 2f + 2 < N . Moreover, although adver-
saries may be able to increase the number of clients un-
der their control, they cannot artificially increase their stake
in the system except by either providing valid updates that
pass Multi-KRUM (Blanchard et al. 2017), or by modify-
ing their gradient updates to evade anomaly detection as in
a model poisoning attack (Bagdasaryan et al. 2020). We fur-
ther assume that the intent of the adversary is to harm the
performance, or introduce backdoors, into the shared global
model, or leak private information about the used training
dataset. For the purpose of this work, we limit the adver-
saries to label flipping attacks (Taheri et al. 2020), pixel-
pattern backdoor attacks (Bagdasaryan et al. 2020), and deep
leakage from gradients using reconstruction attacks (Zhu,
Liu, and Han 2019).

BEAS’s operating steps are describes in Scheme 1. Al-
gorithm 1 describes the high level required steps and opera-
tions of our proposed BEAS framework for the decentralized
federated machine learning training in N -party settings.

Scheme 1: BEAS Framework

Input: Client Ci for i ∈ {1, · · · ,K} holds its private
dataset Di.
Output: Client Ci for i ∈ {1, · · · ,K} obtain the col-
laboratively learned global model, MG.
1. Clients create cryptographically anonymous identi-

ties using the MSP.
2. To begin training process, any client Ci ∈ CK can

set up a new channel c, define the training parame-
ters and the model architecture, and generate a gen-
esis blockMg by training on their own private data
Di locally.Mg is uploaded as the first global block
on the channel ledger Lc.

3. Other clients connect to the EP to request the lat-
est global block from the channel ledger. They
use the requested block to initialize a pre-trained
model, and update it by training on their own pri-
vate datasets Di to generate new local gradients.

4. Client Ci sends their local gradients to the EP,
which creates a new local block and shares it with
the Ordering service.

5. The ordering service establishes consensus on the
ordering of blocks, and consequently commits them
onto each EP’s ledger using a peer-to-peer gossip
protocol.

6. The EP checks if the number of queued local blocks
is ≥ than the merge threshold. If true, the Merge
chaincode is triggered to evaluate the quality of

each local block by calculating the anomaly detec-
tion scores, and aggregating blocks using federated
averaging to generate a new global block, which is
then sent to the channel ledger.

7. Steps 3 to 6 get repeated until desired accuracy for
the shared global is achieved or ad-infinitum.

Algorithm 1: BEAS Training Algorithm
Input: BEAS with K Local Blocks generated by K

clients, for Pk the set of indexes of data points
on client k, and nk = | pk |.
fi(w) = l(xi, yi;w) is the loss of the
prediction on example (xi, yi) made with
model parameters w. When K > t, where t is
the merging threshold, the merge chaincode is
triggered to generate the Global Block.
MFL := Machine learning algorithms to be
trained; ε := differential privacy guarantee;
C1→N := Set of N participants, where Ci
holds its own dataset Di; c := local training
cluster size.

Output: Trained Global ModelMG
ChannelInitialize(t):

for each training round do
K = 0
for each client Ck in parallel do
Mk

L = LocalTraining(MG, k, w)
K = K + 1
if K > t then
MG →ModelAggregate(ML, w)

LocalTraining(MG, k, w):
pretrainML usingMG

Mk
L → 1

nk

∑
i∈Pk

fi(Mk
L) + ε // run on

client k

returnMk
L

ModelAggregate(ML, w):
MKScore(Mi

L) =
∑
i→j || Mi

L −M
j
L ||2

for top m blocks by score do
MG →

∑K
k=1

nk

n Fk(M
i
L)

returnMG

System Architecture
In traditional FL, each client Ci trains a local model MLi
with their own private data, and shares only the generated
gradients with a centralized aggregator that is responsible
for storage and exchange of model gradients, and periodi-
cally merges previous local model gradients to generate the
new global model MG . This is a vulnerable single point
of failure as malicious aggregators can bias contributions
of preferred clients over others (Li et al. 2020) to skew
the shared global model. In a decentralized setting such as
ours, we replace the role of the centralized aggregator with

blockchain smart contracts (Androulaki et al. 2018) for stor-
age, exchange, and merging of model gradients. The frame-
work architecture is depicted in Figure 1 and is implemented
using the Fabric Blockchain (Androulaki et al. 2018; fab
2020).

Figure 1: Platform Architecture for BEAS implemented using HyperLedger Fab-
ric Blockchain (Androulaki et al. 2018; fab 2020). Steps annotated as detailed in
Scheme 1.

The framework is designed to be scalable to incorporate
large numbers of participating clients, as well as allow par-
allel FL models on the same platform with minimum over-
heads. In our experiments, we assume that the participat-
ing nodes are organized in a tree-network topology with ev-
ery endorsing peer (EP) connected to multiple clients for
communication efficiency. However, our framework is com-
pletely decentralized and network topology agnostic; it does
not necessitate any topological node hierarchy, and each EP
can be set up to work with a single node if required. The
learning models are built using general-purpose ML APIs;
hence BEAS can support any model architecture that can be
optimized using SGD.

Clients generate cryptographically anonymous identities
using the HyperLedger Fabric Membership Service provider
(MSP) (fab 2020). Multi-channel blockchain design is used
to facilitate collaboration on multiple tasks simultaneously.
Every channel is set up with its own ML task, and a separate
ledger. The ledger comprises a blockchain that stores model
gradients as immutable and sequenced records in blocks,
and a world-state database that stores the current state (An-
droulaki et al. 2018; fab 2020). We refer the reader to the
Appendix for figures depicting the multi-channel blockchain
design, as well as the block designs.

To begin the training process, any client can set up a new
channel, define the training parameters and the model ar-
chitecture, and generate a genesis block by training on their
own private data locally. The generated genesis block is ap-
pended to the channel’s ledger as the first global block. Now,
other clients can connect to this channel to use the global
model as per their own requirements, or collaborate to im-

Figure 2: BEAS uses multi-channel blockchain to enable par-
allel FL task execution.

Figure 3: BEAS blockchain block design.

prove the existing model with FL. In subsequent training
rounds, clients request the Endorsing Peers (EP) that store
a real-time copy of the ledger for the previous global block
on the ledger, and use this as a pre-training model. They
train using their own private data to generate updated gra-
dients, and then send them back to the EP to create a new
local block by executing smart contracts in an isolated envi-
ronment. All the generated local blocks at EPs are then sent
to an Ordering Service, which establishes consensus on the
order of the created blocks before sending them back to EP
for commitment to the ledger.

When a threshold t of local blocks is achieved on the
ledger, a gradient merging smart contract is triggered to
merge all the received local blocks using federated gradient
averaging (McMahan et al. 2017) to generate a new global
block. Since different clients have varying sizes of datasets
that are not independent and identically distributed (Non-
i.i.d), the merge contract weighs the contribution of each lo-
cal block upon the size of its training dataset.

We also limit the amount of data that can be used by any
client to train in a given local round to small chunks, and
restrict local training to a low number of epochs. That is,
clients divide their datasets into small subsets that are used
for training in subsequent rounds, instead of training on the
entire dataset in a single round of local training. This is done
to ensure that the local models do not pre-maturely con-
verge while training, as that can lead to forgetting of features
learned in previous rounds.

Adversarial Poisoning

Malicious clients can tamper with their local training
datasets to perform data poisoning attacks (Jagielski et al.
2020; Bagdasaryan et al. 2020) that can introduce backdoors
into the shared global model. In fact, a single poisoned gra-
dient can deviate the merged gradient significantly. Central-
ized FL frameworks majorly rely on server-owned validation
datasets to evaluate local gradient performance before ag-
gregating them into the global model, rejecting updates that
perform poorly (Xie, Koyejo, and Gupta 2019). However, in
a privacy-sensitive decentralized setting such as ours, detect-
ing anomalous updates without using a publicly available
testing dataset is required.

We use the FoolsGold (Fung, Yoon, and Beschastnikh
2020) (FG) defense protocol to address data poisoning at-
tacks. In FL, training data is assumed to be non-IID. FG re-
lies on similarity between client updates to distinguish hon-
est participants from act-alike sybils by comparing the simi-
larity of their gradient updates: sybils will contribute updates
that are closer to each other than those among honest clients.
It adapts the learning rate per client based on the similarity
in indicative features amongst clients in any given round.
As the framework faces larger groups of adversaries, it has
more information to more reliably detect similarity between
sybils. Unlike other defenses, FG does not require knowl-
edge of the number of sybil attackers, and does not require
modifications to the client-side protocol.

Unfortunately, as FG works by detecting similarity in gra-
dients amongst Sybils, it fails to detect solitary attackers.
For this case, BEAS complements FG with Multi-KRUM
(MK) (Blanchard et al. 2017). Multi-KRUM (Blanchard
et al. 2017) is a byzantine-resilient gradient aggregation al-
gorithm that can address data poisoning attacks. In every
federated round, it scores each local block based on its de-
viation from every other submitted blocks. It guarantees re-
siliency from f malicious updates out of n total updates,
when 2f + 2 < n. For update Vi ∀ i ∈ [1, n], Score(Vi)
is calculated as the sum of euclidean distances between Vi
and Vj , where Vj denotes the n− f − 2 closest vectors to Vi
as: Score(Vi) =

∑
i→j || Vi − Vj ||2. Here, i → j denotes

the fact that Vj belongs to n − f − 2 closest vectors to Vi.
The n − f updates with the lowest scores are selected for
aggregation, and the rest are discarded. We refer the reader
to (Blanchard et al. 2017) for security guarantees and con-
vergence analysis of Multi-KRUM, and to (Fung, Yoon, and
Beschastnikh 2020) for detailed description of the Fools-
Gold protocol.

To evade anomaly detection algorithms, malicious clients
can also manipulate the training algorithm, their model pa-
rameters, or directly the model gradients, to generate poi-
soned model gradients. Bagdasaryan et al. (Bagdasaryan
et al. 2020) demonstrates a backdoor model poisoning at-
tack that uses constrain-and-scale techniques to generate
gradients that do not look anomalous, but can introduce
backdoors in the global model after merging. The gener-
ated model can achieve high accuracy on both – the main
task, and an attacker-chosen backdoor subtask. Bagdasaryan
et al. (Bagdasaryan et al. 2020) demonstrates that DP based

techniques with low clipping bounds and high noise vari-
ance can render the backdoor attack ineffective, but signifi-
cantly decrease the accuracy of the global model on its main
task. To minimize the efficacy of model poisoning attacks
with DP, but without impacting model performance, we ex-
periment with gradient pruning where gradients with small
magnitudes are pruned to zero (Tsuzuku, Imachi, and Akiba
2018; Lin et al. 2020). Our experimental results show that as
more and more gradient values are pruned, the sparsity in the
model gradients increases: this has minimal impact on the
main task, but minimizes the accuracy on the backdoor sub-
task under a model poisoning attack (Blanchard et al. 2017)
due to gradient obfuscation, as it makes constrain-and-scale
hard. We conclude that gradient pruning is an effective de-
fense against model poisoning attacks on the backdoor sub-
task, and include pruning in the local training rounds for
BEAS.

Privacy Leakage
In FL, client data is not directly shared with a centralized
aggregator; to prevent leakage of data privacy, only the gra-
dients are shared. However, (Song and Mittal 2020) demon-
strates that a malicious aggregator can reveal sensitive in-
formation even from shared gradients that inadvertently re-
tain features from the data used to train them. (Zhu, Liu,
and Han 2019) further proposes a Deep Leakage from Gra-
dient (DLG) attack where an adversary can reconstruct the
training dataset and labels from gradients by first generating
‘dummy’ inputs and labels, and then performing the usual
forward and backward pass using them to generate dummy
gradients. Now, instead of optimizing model weights as in a
typical learning setting, the adversary optimizes the dummy
inputs and labels by minimizing the deviation between the
dummy and real gradients, with the goal to make the dummy
data close to the original ones, thereby revealing private in-
formation (Zhu, Liu, and Han 2019).

Prior work proposes the use of cryptographic techniques
such as secure multi-party computation (MPC) (Perry et al.
2014), Homomorphic Encryption (Rivest, Adleman, and
Dertouzos 1978), Functional Encryption (Xu and Huang
2020), and Secret Sharing (Shamir 1979) for the secure ex-
change of model gradients. However, cryptographic tech-
niques involve significant computational overheads, and per-
form poorly in scale (Phong et al. 2018). Moreover, since
cryptographic techniques encrypt shared gradients to pre-
vent leakage of privacy, the gradients cannot be evaluated
using anomaly detection algorithms. This renders the frame-
work vulnerable to poisoning attacks. Similarly, DP tech-
niques such as the addition of DP-noise and clipping of gra-
dient values to limit privacy leakage by obfuscating model
gradients have been explored in prior work, but impact ac-
curacy (Lyu et al. 2020; Abadi et al. 2016; Dwork 2006).

Our experimental results demonstrate that gradient prun-
ing is more effective than other DP-based techniques to pre-
serve user data privacy under FL while ensuring minimal
impact on model performance, but has not been used in re-
cent work. To evaluate the extent of possible leakage of pri-
vacy, we implement the DLG Attack (Zhu, Liu, and Han
2019) with three different techniques – the addition of noise,

gradient value clipping, and gradient pruning. We observe
that gradient pruning helps minimize reconstruction of sen-
sitive information of the training dataset from shared gradi-
ents. Moreover, pruning has minimal impact on model per-
formance compared to existing noise and clipping based DP
techniques.

Experimental Evaluation
In this section, we experimentally evaluate BEAS’s perfor-
mance and present our empirical results, followed by a se-
curity and privacy analysis of the framework.

Implementation Details
We implement the BEAS framework using the HyperLedger
Fabric v2.2 Blockchain (Androulaki et al. 2018; fab 2020),
with the smart-contracts and client applications programmed
using Node.js. All the experiments are performed using
a Linux server with Intel Xeon E3-1200 v5 CPUs and
GeForce RTX 2070 GPU, with 32 GB RAM. All client
nodes are executed in isolated docker containers, and are
connected using a 2Gbps bandwidth virtual network with an
average network delay of 0.2ms.

Experimental Setup
Unless otherwise stated, we set up our test blockchain net-
work with 5 endorsing peers (EP), each of which is con-
nected to participating clients in two settings: (a) 4 clients
per EP (N = 4 × 5 = 20 Clients), and (b) 10 clients per EP
(N = 10× 5 = 50 Clients), as our default network setting. In
every training round, clients train a local model using a sub-
set of their data (of cluster size c), and send the generated
gradients to the EP as local blocks. When a threshold t of
local blocks is achieved on the ledger, the merge chaincode
is triggered to generate the new global block by aggregating
the previous local blocks using federated averaging (McMa-
han et al. 2017). The merging threshold parameter t is kept
low to ensure that the number of global training rounds in-
creases, which has better impact on model performance than
merging more gradient contributions per round as per our
experiments. The value of cluster size c is set in a way that
ensures at least 50 global training rounds can be achieved
with the resultant dataset split. The cluster size c and the
threshold t are defined in the following subsections based
on the dataset used.

Datasets and Model Configurations
We report our evaluation of the BEAS framework using 3
popular and standard datasets with standard model configu-
ration as follows:

MNIST (LeCun and Cortes 2010). Consists of 60,000
training images resized to (28, 28, 1), along with 10,000
testing images. Model used is a feed-forward CNN model.
Following (McMahan et al. 2017; Bagdasaryan et al. 2020),
we randomly split the dataset amongst the clients with an
unbalanced sample from each class using a Dirichlet distri-
bution (Minka 2003) with hyperparameter 0.9 to simulate
non-i.i.d. distribution. Merging threshold t is set as 5, and
local training is done for 5 epochs with the learning rate of

0.1 using a randomly selected cluster of size c = 250 from
the clients data subset, with standard batch size 32.

Malaria Cell Image (Rajaraman et al. 2018). Consists
of 27,558 images, resized to (50, 50, 3). We set aside the
20% of the dataset for testing. Model used is a feed-forward
CNN model. We split the dataset as done for MNIST above.
Merging threshold t is set as 5, and local training is done
for 3 epochs with the learning rate of 0.1 using a randomly
selected cluster of size c = 100 from the clients data subset,
with standard batch size 32.

CIFAR-10 (Krizhevsky 2009). Consists of 50,000 im-
ages, resized to (32, 32, 3), along with 10,000 testing im-
ages. Model used is a feed-forward CNN model. To ob-
tain the accuracy results, we execute a simulated BEAS (us-
ing Tensorflow) with approximated activation functions and
a fixed-precision. We split the dataset as done for MNIST
above. Merging threshold t is set as 5, and local training is
done for 5 epochs with learning rate of 0.1 using a randomly
selected cluster of size c = 150 from the clients data subset,
with standard batch size 32.

Experimental Results
We evaluate BEAS in terms of (a) the accuracy of the resul-
tant global model, and (b) the scalability of the framework.
Tables 2 show the results obtained in our two settings with
N = 20 and N = 50 respectively. The accuracy column
compares the accuracy obtained using BEAS with a central-
ized ML approach, where the training dataset is available in
a centralized setting. The execution time per local round, as
well as the overall execution time are also mentioned.

Security and Privacy Analysis
We analyze the security and privacy of our proposed frame-
work from (a) reconstruction attacks that are threat to client
data privacy, and (b) two types of adversarial attacks – data
poisoning attack (Jagielski et al. 2020) and model poisoning
attack (Bagdasaryan et al. 2020).

Privacy Guarantees
We experiment with the Deep Leakage from Gradient At-
tack (DLG Attack) proposed by (Zhu, Liu, and Han 2019) to
understand the extent of possible leakage from shared gra-
dients. We also examine the impact of Gaussian noise addi-
tion, gradient value clipping, and gradient pruning to min-
imize this leakage. To simulate a DLG Attack (Zhu, Liu,
and Han 2019), we begin by training an ML model to gen-
erate the gradients Greal using our dataset Dreal. Then, we
generate a pair of dummy inputs and labels Ddummy using
random noise, and train the same ML model to get dummy
gradients Gdummy . Now, instead of optimizing Gdummy ,
we optimize Ddummy using a loss function || Dreal −
Ddummy ||2 that minimizes the distance between the real
gradients and the dummy gradients. Matching the gradients
makes the dummy data close to the original ones. Our exper-
iments show that as the optimization completes, the private
training data can be completely revealed (We refer the reader
to the Appendix for the reconstruction experiment figures).

We experiment with the following standard DP based
schemes (Zhu, Liu, and Han 2019) to reduce adversarial
reconstruction ability of sensitive information from shared
model gradients on BEAS: (a) Gaussian Noise Addition: The
mechanism adds appropriately chosen random noise to the
generated gradients to produce obfuscated gradients. How-
ever, our experiments show that although it successfully
prevents reconstruction at high standard deviation values,
it negatively impacts the model performance. (b) Gradient
Value Clipping: This forces element-wise gradient values to
a specific minimum (or maximum) value if the gradient ex-
ceeded an expected range (Jason Brownlee 2019). However,
our experiments show that it does not minimize leakage of
private data from shared model gradients as the ground truth
image can easily be reconstructed. (c) Gradient Pruning: In-
volves pruning of gradients with small magnitudes to zero
to increase the sparsity between gradients values. In effect,
gradient values with insignificant magnitudes are pruned,
but gradient values with higher magnitude contributions are
preserved. Our experiments show that as we increase gra-
dient sparsity to more than 50%, the recovered images in a
DLG attack (Zhu, Liu, and Han 2019) are no longer recog-
nizable, successfully preventing leakage of sensitive infor-
mation from shared gradients.

Table 3 shows the impact of different parameter settings
for these DP techniques on the global model accuracy for
BEAS. We refer the reader to the Appendix for the accu-
racy graphs. We observe that gradient pruning has mini-
mal impact on model performance compared to other DP
based techniques, but successfully minimizes reconstruction
of training inputs from shared model gradients under the
DLG Attack. This is consistent with the results obtained
by (Zhu, Liu, and Han 2019), where the impact of DP tech-
niques on privacy leakage is evaluated. We refer the reader
to the Appendix for the reconstruction experiment figures.

Adversarial Security
Malicious users can train their local models using manip-
ulated “poisoned” datasets to induce a specific outcome in
the ML task at inference time (Jagielski et al. 2020). To
simulate a data poisoning, we execute a label flipping at-
tack (Nguyen et al. 2021; Tolpegin et al. 2020; Taheri et al.
2020) on the Malaria Cell Image dataset (Rajaraman et al.
2018). Label flipping attacks are a special type of data poi-
soning attacks, wherein the attacker can manipulate the class
labels assigned to a fraction of training inputs. Label flip-
ping attacks can significantly diminish the performance of
the system, even if the attacker’s capabilities are otherwise
limited (Taheri et al. 2020). We experiment with 1, 5, and
10 adversarial participants in our attack setup, who modify
their training datasets by flipping the class label from par-
asitized to uninfected, and vice versa. The aim is to make
the global model more likely to classify the label in the
learning task incorrectly (Nguyen et al. 2021; Tolpegin et al.
2020). To detect and reject malicious updates, we implement
FoolsGold(Fung, Yoon, and Beschastnikh 2020) and Multi-
KRUM (Blanchard et al. 2017). Table 4 shows the impact
of label flipping attack with different number of adversarial
participants. (Note that with Multi-KRUM, the accuracy de-

Figure 4: Impact of differential privacy parameter settings on BEAS global model accuracy; Dataset: Malaria Cell Image (Ra-
jaraman et al. 2018), and MNIST (LeCun and Cortes 2010).

Figure 5: Impact of different differential privacy techniques on BEAS global model accuracy; Dataset: Malaria Cell Image (Ra-
jaraman et al. 2018), and MNIST (LeCun and Cortes 2010).

Figure 6: Private data reconstruction using Deep Leakage
from Gradient Attack (Zhu, Liu, and Han 2019); as the opti-
mization completes, Ddummy reveals the ground truth train-
ing image. Dataset: Malaria Cell Image (Rajaraman et al.
2018)

creases even without any adversarial clients. This is because
the number of training samples also decreases with high re-

jection of blocks.)
To evade anomaly detection algorithms like Multi-

KRUM (Blanchard et al. 2017), malicious clients can in-
troduce backdoors into the joint model by manipulating the
training algorithms, the model parameters, or the model gra-
dients, to generate poisoned model gradients. (Bagdasaryan
et al. 2020) proposes a backdoor model poisoning attack that
uses constrain-and-scale techniques to generate poisoned
model gradients that do not look anomalous, and replace the
global model after aggregating with the other participants’
models. The generated model can achieve high accuracy on
both the main task, and an attacker-chosen backdoor sub-
task. However, the author also shows that DP based tech-
niques with low clipping bounds and high noise variance can
render the backdoor attack ineffective. However, our experi-
mental results show that existing DP techniques such as ad-
dition of noise and clipping the gradient norms significantly
impact the accuracy of the global model on its main task.

Since BEAS uses gradient pruning based DP, we compare

Table 2: BEAS’s accuracy and execution times for N = 20 and N = 50 clients.

Dataset
Centralized
Accuracy

(%)

N = 20 N = 50
Accuracy

(%)
Avg. Execution Time (s) Accuracy

(%)
Avg. Execution Time (s)

Local Training Overall Local Training Overall
MNIST 95.53 92.74 1.89 524 90.11 1.89 726
Malaria 98.89 96.16 2.18 967 92.81 2.18 1276
CIFAR-10 72.81 61.03 38 21608 63.76 38 25966

Table 3: Impact of different differential privacy parameter
settings on BEAS global model accuracy

Framework Parameters
Accuracy (%)

MNIST Malaria
Centralized - 95.53 98.89

BEAS - 92.74 96.16

BEAS + Gaussian
Noise Addition (Std Dev)

Noise (0.10) 59.92 94.7
Noise (0.15) 50.41 94.16
Noise (0.20) 50.07 91.68

BEAS + Gradient
Clipping (Clip Norm)

Clip (0.90) 95.02 96.38
Clip (0.80) 94.55 96.63
Clip (0.70) 94.7 96.17

BEAS + Gradient
Pruning (Sparcity)

Pruning (0.90) 93.39 96.67
Pruning (0.75) 93.97 96.46
Pruning (0.60) 92.95 96.11

Table 4: BEAS accuracy with FoolsGold (FG) (Fung, Yoon,
and Beschastnikh 2020) and Multi-KRUM (MK) (Blanchard
et al. 2017) under Label Flipping attack (Taheri et al. 2020)
for different number of adversaries and (N = 20); Dataset:
Malaria Cell Image (Rajaraman et al. 2018).

Defense Number of Adversaries
0 1 5 10

NIL 96.16 96.02 82.88 57.20
MK 94.22 94.60 91.17 72.11
FG 95.63 82.11 87.50 85.72

MK + FG 94.16 90.26 87.24 83.66

Table 5: BEAS accuracy on main task and backdoor subtask
with different differential privacy techniques under Pixel
Pattern Backdoor Model Poisoning attack (Bagdasaryan
et al. 2020) for different number of adversaries and (N =
20); Dataset: Malaria Cell Image (Rajaraman et al. 2018).

Framework
Main Task

Accuracy (%)
Backdoor Task
Accuracy (%)

Adversaries
per Round

0 1 5 0 1 5

BEAS 96.16 95.81 96.08 11.06 28.20 61.85
BEAS +

Noise (0.05)
85.84 84.66 82.10 09.76 19.44 49.16

BEAS +
Clipping (0.80)

94.55 94.16 93.60 11.33 27.21 62.70

BEAS +
Pruning (0.60)

92.95 92.67 92.88 10.20 22.46 43.88

its efficacy in minimizing the impact of a model poisoning
attack w.r.t other differential privacy techniques. To simu-

Figure 7: Differential Privacy Techniques against Deep
Leakage from Gradient Attack (Zhu, Liu, and Han 2019) to
reconstruct training data from shared model gradients; Re-
construction results after 300 iterations.

late a model poisoning attack, we implement a pixel pattern
model poisoning attack (Bagdasaryan et al. 2020) using the
Malaria Cell Image Dataset (Rajaraman et al. 2018). Here,
the attacker modifies a subset of the training image’s pixels
in order for the model to incorrectly classify the modified
image on a backdoor task, and then uses constrain-and-scale
techniques to evade gradient anomaly detection algorithms
such as Multi-KRUM (Blanchard et al. 2017).

Table 5 shows the performance of the generated global
model on the main task for 0, 1, and 5 adversaries per global
iteration, along with the performance of the generated model
on the backdoor subtask. We see that increasing the number
of adversaries has minimal impact on the accuracy on the
main task, but increases the accuracy of the backdoor sub-
task. We also note that Gradient Pruning minimizes the ac-
curacy on the backdoor subtask, with minimal impact on the
performance of the global model. We conclude that gradient
pruning is the most effective defense against model poison-
ing attacks on the backdoor subtask.

Conclusion
From adversarial poisoning attacks to client data privacy
leakage, traditional FL setups face several challenges. We
propose BEAS, a blockchain based framework which over-
comes these challenges, and conduct extensive experi-
ments with multiple datasets and observe promising re-
sults. BEAS achieves approximately 92.72% accuracy on the
MNIST (LeCun and Cortes 2010) dataset, and 96.16% ac-
curacy on the Malaria Cell Image (Rajaraman et al. 2018)
dataset while training on DNNs. We also scale BEAS with a
large number of participants (20 to 50), where it achieves a
reasonable accuracy of 90.11% on MNIST. To ensure de-
tection and rejection of malicious nodes that try to poi-
son the global model with tampered datasets, we implement
anomalous gradient detection (Blanchard et al. 2017; Fung,
Yoon, and Beschastnikh 2020). We also implement gradient
pruning to maximize privacy protection without sacrificing
model utility loss, which is the case when using traditional
DP techniques. Gradient pruning also helps us reduce the ef-
ficacy of model poisoning attacks (Bagdasaryan et al. 2020).

In the future, we wish to conduct tests using synthetic data
for effective privacy preservation, and ablation studies where
we observe how removal (or addition) of specific features
in the model affect performance in a decentralized FL set-
ting. We also plan to deploy our framework via open-source
channels for different academic and industrial purposes to
observe its working real-time.

References
2020. HyperLedger Fabric: A Blockchain Platform for the
Enterprise. https://bit.ly/3tdkc4f. Accessed: 2021-01-21.
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep Learning
with Differential Privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’16, 308–318. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 9781450341394.
Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Chris-
tidis, K.; and et al. 2018. Hyperledger Fabric: A Distributed
Operating System for Permissioned Blockchains. In Pro-
ceedings of the Thirteenth EuroSys Conference, EuroSys
’18. New York, NY, USA: Association for Computing Ma-
chinery. ISBN 9781450355841.
Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; and
Shmatikov, V. 2020. How To Backdoor Federated Learning.
In Chiappa, S.; and Calandra, R., eds., Proceedings of the
Twenty Third International Conference on Artificial Intelli-
gence and Statistics, volume 108 of Proceedings of Machine
Learning Research, 2938–2948. PMLR.
Balle, B.; and Wang, Y.-X. 2018. Improving the Gaussian
Mechanism for Differential Privacy: Analytical Calibration
and Optimal Denoising. In Dy, J.; and Krause, A., eds., Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, 394–403. Stockholmsmässan, Stockholm Swe-
den: PMLR.
Bhattacharya, P.; Tanwar, S.; Bodke, U.; Tyagi, S.; and Ku-
mar, N. 2019. BinDaaS: Blockchain-Based Deep-Learning

as-a-Service in Healthcare 4.0 Applications. IEEE Transac-
tions on Network Science and Engineering, 1–1.
Blanchard, P.; El Mhamdi, E. M.; Guerraoui, R.; and Stainer,
J. 2017. Machine Learning with Adversaries: Byzantine Tol-
erant Gradient Descent. In Guyon, I.; Luxburg, U. V.; Ben-
gio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and Gar-
nett, R., eds., Advances in Neural Information Processing
Systems, volume 30, 119–129. Curran Associates, Inc.
Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Inger-
man, A.; Ivanov, V.; Kiddon, C.; Konečný, J.; Mazzocchi,
S.; McMahan, H. B.; Overveldt, T. V.; Petrou, D.; Ramage,
D.; and Roselander, J. 2019. Towards Federated Learning at
Scale: System Design. arXiv:1902.01046.
Cao, X.; Fang, M.; Liu, J.; and Gong, N. Z. 2020. FLTrust:
Byzantine-robust Federated Learning via Trust Bootstrap-
ping. arXiv preprint arXiv:2012.13995.
Chen, X.; Ji, J.; Luo, C.; Liao, W.; and Li, P. 2018.
When Machine Learning Meets Blockchain: A Decentral-
ized, Privacy-preserving and Secure Design. In 2018 IEEE
International Conference on Big Data (Big Data), 1178–
1187.
Di Crescenzo, G.; Feigenbaum, J.; Gupta, D.; Panagos, E.;
Perry, J.; and Wright, R. N. 2014. Practical and privacy-
preserving policy compliance for outsourced data. In Inter-
national Conference on Financial Cryptography and Data
Security, 181–194. Springer.
Douceur, J. R. 2002. The Sybil Attack. In Revised Pa-
pers from the First International Workshop on Peer-to-Peer
Systems, IPTPS ’01, 251–260. Berlin, Heidelberg: Springer-
Verlag. ISBN 3540441794.
Dwork, C. 2006. Differential Privacy. In Bugliesi, M.;
Preneel, B.; Sassone, V.; and Wegener, I., eds., Automata,
Languages and Programming, 1–12. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN 978-3-540-35908-1.
Fung, C.; Yoon, C. J. M.; and Beschastnikh, I. 2020. Miti-
gating Sybils in Federated Learning Poisoning.
Gupta, D.; Mood, B.; Feigenbaum, J.; Butler, K.; and
Traynor, P. 2016. Using intel software guard extensions for
efficient two-party secure function evaluation. In Interna-
tional Conference on Financial Cryptography and Data Se-
curity, 302–318. Springer.
Harris, J. D.; and Waggoner, B. 2019. Decentralized and
Collaborative AI on Blockchain. In 2019 IEEE International
Conference on Blockchain (Blockchain), 368–375.
Idé, T. 2018. Collaborative Anomaly Detection on
Blockchain from Noisy Sensor Data. In 2018 IEEE Inter-
national Conference on Data Mining Workshops (ICDMW),
120–127.
Jagielski, M.; Severi, G.; Harger, N. P.; and Oprea, A. 2020.
Subpopulation Data Poisoning Attacks. arXiv:2006.14026.
Jason Brownlee. 2019. How to Avoid Exploding Gradients
With Gradient Clipping. https://bit.ly/3ovSLyZ. Accessed:
2021-01-20.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report.

Kuo, T.-T.; and Ohno-Machado, L. 2018. ModelChain: De-
centralized Privacy-Preserving Healthcare Predictive Mod-
eling Framework on Private Blockchain Networks. ArXiv,
abs/1802.01746.
LeCun, Y.; and Cortes, C. 2010. MNIST handwritten digit
database.
Li, Y.; Chen, C.; Liu, N.; Huang, H.; Zheng, Z.; and Yan, Q.
2020. A Blockchain-Based Decentralized Federated Learn-
ing Framework with Committee Consensus. IEEE Network,
1–8.
Lin, Y.; Han, S.; Mao, H.; Wang, Y.; and Dally, W. J. 2020.
Deep Gradient Compression: Reducing the Communication
Bandwidth for Distributed Training. arXiv:1712.01887.
Lu, Y.; Tang, Q.; and Wang, G. 2018. On Enabling Machine
Learning Tasks atop Public Blockchains: A Crowdsourcing
Approach. In 2018 IEEE International Conference on Data
Mining Workshops (ICDMW), 81–88.
Lyu, L.; Li, Y.; Nandakumar, K.; Yu, J.; and Ma, X. 2020.
How to Democratise and Protect AI: Fair and Differentially
Private Decentralised Deep Learning. IEEE Transactions on
Dependable and Secure Computing, 1–1.
Maheshwari, S. 2018. Blockchain basics: Hyperledger
Fabric. https://developer.ibm.com/technologies/blockchain/
articles/blockchain-basics-hyperledger-fabric/. Accessed:
2021-05-01.
Majeed, U.; and Hong, C. 2019. FLchain: Federated Learn-
ing via MEC-enabled Blockchain Network.
McMahan, H.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In AISTATS.
Minka, T. 2003. Estimating a Dirichlet distribution.
Mondal, A.; More, Y.; Ramachandran, P.; Panda, P.; Virk,
H.; and Gupta, D. 2022. Scotch: An Efficient Secure Com-
putation Framework for Secure Aggregation. arXiv preprint
arXiv:2201.07730.
Mondal, A.; More, Y.; Rooparaghunath, R. H.; and Gupta,
D. 2021a. Flatee: Federated Learning Across Trusted Exe-
cution Environments. arXiv preprint arXiv:2111.06867.
Mondal, A.; More, Y.; Rooparaghunath, R. H.; and Gupta,
D. 2021b. Poster: FLATEE: Federated Learning Across
Trusted Execution Environments. In 2021 IEEE European
Symposium on Security and Privacy (EuroS&P), 707–709.
IEEE.
Mood, B.; Gupta, D.; Carter, H.; Butler, K.; and Traynor, P.
2016. Frigate: A validated, extensible, and efficient com-
piler and interpreter for secure computation. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P),
112–127. IEEE.
Nakamoto, S. 2009. Bitcoin: A peer-to-peer electronic cash
system.
Narayanan, A.; Bonneau, J.; Felten, E.; Miller, A.; and
Goldfeder, S. 2016. Bitcoin and Cryptocurrency Technolo-
gies: A Comprehensive Introduction. USA: Princeton Uni-
versity Press. ISBN 0691171696.

Nguyen, T. D.; Rieger, P.; Yalame, H.; Möllering, H.;
Fereidooni, H.; Marchal, S.; Miettinen, M.; Mirhoseini,
A.; Sadeghi, A.-R.; Schneider, T.; and Zeitouni, S.
2021. FLGUARD: Secure and Private Federated Learning.
arXiv:2101.02281.
Papernot, N.; Song, S.; Mironov, I.; Raghunathan, A.; Tal-
war, K.; and Erlingsson, Ú. 2018. Scalable private learning
with pate. arXiv preprint arXiv:1802.08908.
Perry, J.; Gupta, D.; Feigenbaum, J.; and Wright, R. N. 2014.
Systematizing secure computation for research and decision
support. In International Conference on Security and Cryp-
tography for Networks, 380–397. Springer.
Phong, L. T.; Aono, Y.; Hayashi, T.; Wang, L.; and Moriai,
S. 2018. Privacy-Preserving Deep Learning via Additively
Homomorphic Encryption. IEEE Transactions on Informa-
tion Forensics and Security, 13(5): 1333–1345.
Rajaraman, S.; Antani, S. K.; Poostchi, M.; Silamut, K.;
Hossain, M. A.; Maude, R. J.; Jaeger, S.; and Thoma, G. R.
2018. Pre-trained convolutional neural networks as feature
extractors toward improved malaria parasite detection in thin
blood smear images. PeerJ, 6: e4568.
Ramachandran, P.; Agarwal, S.; Mondal, A.; Shah, A.; and
Gupta, D. 2021. S++: A Fast and Deployable Secure-
Computation Framework for Privacy-Preserving Neural
Network Training. arXiv preprint arXiv:2101.12078.
Ramanan, P.; and Nakayama, K. 2020. BAFFLE :
Blockchain Based Aggregator Free Federated Learning.
In 2020 IEEE International Conference on Blockchain
(Blockchain), 72–81.
Rivest, R. L.; Adleman, L.; and Dertouzos, M. L. 1978. On
Data Banks and Privacy Homomorphisms. Foundations of
Secure Computation, Academia Press, 169–179.
Ryffel, T.; Trask, A.; Dahl, M.; Wagner, B.; Mancuso, J.;
Rueckert, D.; and Passerat-Palmbach, J. 2018. A generic
framework for privacy preserving deep learning. arXiv
preprint arXiv:1811.04017.
Sav, S.; Pyrgelis, A.; Troncoso-Pastoriza, J. R.; Froelicher,
D.; Bossuat, J.-P.; Sousa, J. S.; and Hubaux, J.-P. 2020.
POSEIDON: Privacy-Preserving Federated Neural Network
Learning. arXiv preprint arXiv:2009.00349.
Shae, Z.; and Tsai, J. 2018. Transform Blockchain into
Distributed Parallel Computing Architecture for Precision
Medicine. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), 1290–1299.
Shamir, A. 1979. How to Share a Secret. Commun. ACM,
22(11): 612–613.
Sharon, C.; and Gari, S. 2018. Technical advan-
tages of Hyperledger Fabric for blockchain networks.
https://developer.ibm.com/technologies/blockchain/articles/
top-technical-advantages-of-hyperledger-fabric-for-
blockchain-networks/. Accessed: 2021-05-01.
Shayan, M.; Fung, C.; Yoon, C.; and Beschastnikh, I. 2018.
Biscotti: A Ledger for Private and Secure Peer-to-Peer Ma-
chine Learning. ArXiv, abs/1811.09904.
Shokri, R.; and Shmatikov, V. 2015. Privacy-preserving
deep learning. In Proceedings of the 22nd ACM SIGSAC

conference on computer and communications security,
1310–1321.
Song, L.; and Mittal, P. 2020. Systematic Evalu-
ation of Privacy Risks of Machine Learning Models.
arXiv:2003.10595.
Taheri, R.; Javidan, R.; Shojafar, M.; Pooranian, Z.; Miri,
A.; and Conti, M. 2020. On defending against label flipping
attacks on malware detection systems. Neural Computing
and Applications, 1–20.
Tolpegin, V.; Truex, S.; Gursoy, M. E.; and Liu, L. 2020.
Data Poisoning Attacks Against Federated Learning Sys-
tems. arXiv:2007.08432.
Truex, S.; Baracaldo, N.; Anwar, A.; Steinke, T.; Ludwig,
H.; Zhang, R.; and Zhou, Y. 2019. A hybrid approach to
privacy-preserving federated learning. In Proceedings of the
12th ACM Workshop on Artificial Intelligence and Security,
1–11.
Tsuzuku, Y.; Imachi, H.; and Akiba, T. 2018. Variance-based
Gradient Compression for Efficient Distributed Deep Learn-
ing. arXiv:1802.06058.
Wang, W.; Chen, Z.; Yan, X.; and Tian, J. ???? Cortex - AI
on Blockchain: The Decentralized AI Autonomous System.
Technical report.
Wood, D. 2014. ETHEREUM: A SECURE DECEN-
TRALISED GENERALISED TRANSACTION LEDGER.
Xie, C.; Koyejo, S.; and Gupta, I. 2019. Zeno: Dis-
tributed Stochastic Gradient Descent with Suspicion-based
Fault-tolerance. In Chaudhuri, K.; and Salakhutdinov, R.,
eds., Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine
Learning Research, 6893–6901. PMLR.
Xu, R.; Baracaldo, N.; Zhou, Y.; Anwar, A.; and Ludwig,
H. 2019. HybridAlpha: An Efficient Approach for Privacy-
Preserving Federated Learning. In Cavallaro, L.; Kinder, J.;
Afroz, S.; Biggio, B.; Carlini, N.; Elovici, Y.; and Shabtai,
A., eds., Proceedings of the 12th ACM Workshop on Artifi-
cial Intelligence and Security, AISec@CCS 2019, London,
UK, November 15, 2019, 13–23. ACM.
Xu, Y.; and Huang, Y. 2020. Segment Blockchain: A Size
Reduced Storage Mechanism for Blockchain. IEEE Access,
8: 17434–17441.
Yang, Q.; Liu, Y.; Chen, T.; and Tong, Y. 2019. Federated
Machine Learning. ACM Transactions on Intelligent Sys-
tems and Technology, 10(2): 1–19.
Yong, H.; Lee, C.; and Wang, D. 2017. DeepBrain
Chain: Artificial intelligence computing platform driven by
blockchain. Technical report.
Zhang, C.; Li, S.; Xia, J.; Wang, W.; Yan, F.; and Liu,
Y. 2020. BatchCrypt: Efficient Homomorphic Encryption
for Cross-Silo Federated Learning. In 2020 USENIX An-
nual Technical Conference (USENIX ATC 20), 493–506.
USENIX Association. ISBN 978-1-939133-14-4.
Zhou, S.; Huang, H.; Chen, W.; Zhou, P.; Zheng, Z.; and
Guo, S. 2020. PiRATE: A Blockchain-Based Secure Frame-
work of Distributed Machine Learning in 5G Networks.
IEEE Network, 34(6): 84–91.

Zhu, L.; Liu, Z.; and Han, S. 2019. Deep Leakage from
Gradients. In Wallach, H.; Larochelle, H.; Beygelzimer, A.;
d'Alché-Buc, F.; Fox, E.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 32, 14774–
14784. Curran Associates, Inc.

Appendix
More Detail on Poisoning Attacks
In poisoning attacks, the adversary Ac manipulates the lo-
cal models Wi of k < K

2 clients to obtain poisoned mod-
els W ′i which are then aggregated into the global model
Gt and affect its behavior. Poisoning attacks can be divided
into untargeted and targeted attacks. In untargeted attacks,
the adversary’s goal is merely to impact (deteriorate) the
benign performance of the aggregated model, while in tar-
geted attacks (also called backdoor attacks), the adversary
wants the poisoned model G′t to behave normally on all in-
puts except for specific attacker-chosen inputs x ∈ IAc for
which attacker-chosen (incorrect) predictions should be out-
put (Nguyen et al. 2021).

Data Poisoning Attack In a data poisoning attack, the ad-
versary Ac adds manipulated ”poisoned” data to the train-
ing data used to train local model Wi (Nguyen et al. 2021).
For this, the adversary can implement a label flipping at-
tack (Tolpegin et al. 2020): given a source class csrc and
a target class ctarget from C, each malicious participant Ai
modifies their dataset Di as follows: For all instances in Di

whose class is csrc, change their class to ctarget. We denote
this attack by csrc → ctarget. The goal of the attack is to
make the final global model Gt more likely to misclassify
the primary model task (Nguyen et al. 2021; Tolpegin et al.
2020).

Algorithm 2: Constrain-and-scale (Bagdasaryan et al. 2020) for

model poisoning attack, where the objective function is modified by adding

an anomaly detection termLano;Lmodel = α×Lclass +(1−α)×
Lano. Hyperparameter α controls the importance of evading anomaly de-

tection.
Constrain-and-scale(Dlocal, Dbackdoor)
Initialize attacker’s modelX and loss function l
X ← Gt

l← α× Lclass + (1− α)× Lano

for epoch e ∈ Eadv do
if Lclass(X,Dbackdoor) < ε then

break ; // Early stop, if model converges

end
for batch b ∈ Dlocal do

b← replace(c, b,Dbackdoor)
X ← X − lradv ×∇l(X, b)

end
if epoch e ∈ step sched then

lradv ← lradv/step rate

end
L̃t+1 ← γ(X −Gt) +Gt ; // Scale up the model

before submission

end
return L̃t+1

Model Poisoning Attack In a model poisoning attack, the
adversary Ac manipulates the training algorithms, their pa-
rameters, or directly manipulates (e.g., by scaling) the model
W ′i . When performing the attack, the adversary seeks to
maximize attack impact while ensuring the distance (e.g.,
Euclidean distance) between poisoned models W ′ and be-
nign modelsW remains below the detection threshold ε such
as Multi-KRUM (Blanchard et al. 2017) of the aggregator to
evade possible anomaly detection performed by the aggrega-
tor on individual clients’ model updates (Bagdasaryan et al.
2020; Tolpegin et al. 2020; Nguyen et al. 2021).

Bagdasaryan et al. (Bagdasaryan et al. 2020) propose a
model poisoning attack that uses constrain-and-scale tech-
niques to create a model that does not look anomalous and
replaces the global model after averaging with the other par-
ticipants’ models (see Algorithm 2).

