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Abstract
Differential Privacy (DP) provides strong guarantees on
the risk of compromising a users data in statistical learn-
ing applications, though these strong protections make
learning challenging and may be too stringent for some
use cases. To address this, we propose element level
differential privacy, which extends differential privacy
to provide protection against leaking information about
any particular “element” a user has, allowing better util-
ity and more robust results than classical DP. By care-
fully choosing these “elements,” it is possible to provide
privacy protections at a desired granularity. We provide
definitions, associated privacy guarantees, and analysis
to identify the tradeoffs with the new definition; we also
develop several private estimation and learning method-
ologies, providing careful examples for item frequency
and M-estimation (empirical risk minimization) with
concomitant privacy and utility analysis. We comple-
ment our theoretical and methodological advances with
several real-world applications, estimating histograms
and fitting several large-scale prediction models, includ-
ing deep networks.

Introduction
The substantial growth in data collection across many
domains has led to commensurate attention to and work
on privacy risks in both academic [Dwork et al. 2006b,
Dwork and Roth 2014] and industrial settings [Erlings-
son, Pihur, and Korolova 2014, Apple Differential Pri-
vacy Team 2017, Bhowmick et al. 2018]. Differential
privacy [Dwork et al. 2006b] and its variants [Dwork
et al. 2006a, Bun and Steinke 2016, Mironov 2017]—
where a randomized algorithm returns similar outputs
for similar input samples—is now the standard privacy
methodology, as it gives provable protection against
strong adversarial attacks on privacy. Indeed, given the
output of a differentially private analysis on a sam-
ple S = {X1, . . . , Xn}, it is challenging to identify
whether a particular individual x belongs to S even for
an attacker knowing the entire sample except for a sin-
gle observation. These strong guarantees motivate work
on private data analyses, including in statistical esti-
mation [Smith 2011, Duchi, Jordan, and Wainwright
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2018], machine learning [Chaudhuri, Monteleoni, and
Sarwate 2011], game theory [McSherry and Talwar
2007], and networks and graphs [Kasiviswanathan et al.
2013, Kearns et al. 2016].

Yet developing private algorithms that achieve rea-
sonable utility is challenging, as the strong protections
differential privacy provides necessarily degrade statis-
tical utility. On the theoretical side, the relative sam-
ple size necessary for private algorithms to achieve
similar utility to that of non-private algorithms grows
with problem dimension and inversely with the pri-
vacy parameter ε [Barber and Duchi 2014, Steinke and
Ullman 2017, Duchi, Jordan, and Wainwright 2018,
Duchi and Rogers 2019]. On a practical level, this chal-
lenge may lead privacy applications to instantiate a
large privacy parameter ε to obtain acceptable statistical
performance—for example, Abadi et al. [2016] remark-
ably are able to fit neural networks with differential pri-
vacy at all, though they require a value of ε = 8 even
for a weaker form of “event level” privacy to achieve
performance approaching non-private algorithms—but
privacy guarantees for large values are unclear [Dwork
and Roth 2014].

We argue that standard differential privacy’s strong
protections are not always necessary to provide suffi-
cient protection for a system’s users. For example, an
individual phone user sends multiple text messages, or
takes several cell-phone photos, each a single datum.
In such cases, it may be satisfying from a privacy per-
spective not to protect whether a user participates in a
dataset—versions of differential privacy protect against
discovering this participation, though whether one has
a phone is likely not very sensitive—but to protect so
that no one knows any particular thing a user has done,
e.g., whether the user has ever typed a given word or
taken a photo of a mountain. Concretely, consider es-
timating the frequency of different word use in email
messages. Differential privacy prevents an attacker from
(accurately) distinguishing a user who sends hundreds
of emails daily from one who has never typed a word in
his or her lifetime, a protection that may be too strong.
More nuanced tradeoffs can arise if we wish to prevent
an attacker from knowing, for example, whether a user
has ever typed a given word.



To address these challenges, we propose element-
level differential privacy, which aims to provide pro-
tection for what we—at the risk of some hubristic
excess—might term reasonable attacks. The motivation
for our definition is that in many statistical estimation
and learning problems, an individual may contribute
many datapoints; in a problem of learning from mobile
devices, a typical cell-phone contains many individual
photos and hundreds of distinct text messages, for ex-
ample, and it is these data that are private. The key to
differential privacy and its descendant definitions is the
notion of neighboring datasets [Dwork and Roth 2014]
or samples, where privacy guarantees certify that an ad-
versary given the output of a private mechanism M can-
not reliably distinguish between its applications M(x)
and M(x′) on neighboring samples x and x′. In differ-
ential privacy, two samples are neighboring if they dif-
fer in at most a single observation. As Chatzikokolakis
et al. [2013] note, it is thus natural to quantify a distance
between users or samples x, x′ to redefine neighboring,
and mechanisms then provide privacy for nearby users
under this distance [Chatzikokolakis et al. 2013].

Figure 1. Example histories of four different users’
text messages (each column represents a user’s con-
versation). The left three columns reflect a conversa-
tion of the first author with his friends. The rightmost
is a conversation between the second and third au-
thors. In the standard differential privacy definition,
each user is distance 1 from each other user. In con-
trast, element-level privacy (with the histogram dis-
tance function described in the introduction) identi-
fies the three left transcripts as neighboring—at dis-
tance 2—irrespective of the number of times each
uses the word yo or bro, while the right conversa-
tion is distant.

Element-level privacy takes this idea and defines dis-
tances based on the elements, which we describe in the
sequel, that an individual user’s data x contains; here,
two users are neighboring if they differ in one or fewer
elements. Consider estimating frequency of word use in
text (SMS) messages. Then a possible distance func-
tion between two users is the number of words that
have different counts per user, i.e., we represent each
user as a vector x ∈ Nd of per-word counts (how many
times the user used each word in a dictionary of size d),
and the distance between users is the Hamming distance
d(x, x′) =

∑d
j=1 1{xj 6= x′j} between their histograms

(see Figure 1). Element-level differential privacy then
makes it challenging for an attacker to discover any par-
ticular word a user utters. We present more concrete ex-
amples to compare and contrast element-level and clas-
sical differential privacy.

As we note above, there is substantial work on pri-

vacy broadly, with a line of work investigating appro-
priate notions of distance and what distinctions be-
tween individuals and data should be protected. We
highlight a few works in this direction here. Andrés
et al. [2013] develop distance-based notions of pri-
vacy to release information to geo-location services,
where privacy protections may degrade with distance
to a user (e.g., it is acceptable to release that a user
is in Paris, but perhaps not at 28 Rue Vieille du Tem-
ple). In the context of large-scale web or mobile appli-
cations, there are differences between event-level pri-
vacy [Dwork et al. 2010, Erlingsson, Pihur, and Ko-
rolova 2014, Abadi et al. 2016], which protects each
individual action a user takes, though a user contribut-
ing multiple data items (e.g. sending multiple text mes-
sages) suffers linear degradation in privacy guarantees,
and user-level privacy [McMahan et al. 2018], where all
users are neighboring, no matter how many data contri-
butions they make or how diverse their data. The for-
mer (event-level) provides limited privacy guarantees,
while the latter (user-level) may be too strong for prac-
tical use. In this context, element-level privacy attempts
to provide privacy at the right granularity for the ap-
plication at hand: in a way we formalize shortly, one
identifies the elements to be protected, then guarantees
that no matter how much data corresponding to a partic-
ular element a user contributes, the output of the privacy
mechanism changes little.

In the remainder of the paper, we carefully define
element-level differential privacy, using standard tools
to show that it inherits many of the desiderata important
for satisfactory privacy definitions (composition, group
privacy, privacy to post-processing, side-information re-
silience, and amplification by subsampling). As one of
our major goals is to provide practicable procedures
for estimation and learning with privacy protections, we
present several methodological contributions. In partic-
ular, we demonstrate histogram estimators and tools for
estimation of frequent elements, highlighting the advan-
tages element-level privacy can provide, and we show
how to apply element-level privacy to fit large scale ma-
chine learning models and compute M-estimators us-
ing stochastic-gradient-type methods. Along the way,
we demonstrate a new asymptotic normality result for
stochastic approximation procedures applied to fixed fi-
nite datasets, which may be of interest beyond privacy.
We complement these with experimental evidence on
several real-world machine-learning tasks.

Element-level privacy

As we allude in the introduction, our main goal in this
paper is to provide a new definition of privacy, simulta-
neously developing its properties while demonstrating
new procedures that obey its strictures. To that end, we
begin by defining element-level privacy, contrasting it
with prior notions.



Privacy definitions
The key to each of these definitions of privacy is a dis-
tance on the space of samples. In particular, let dsample :
Xn × Xn → R+ be a distance on Xn, and let M be
a randomized mapping from Xn to some (measurable)
spaceZ . In standard differential privacy, this distance is
the (order-invariant) Hamming metric: letting Πn be the
collection of all permutations of n elements, for sam-
ples S = (x1, . . . , xn), S′ = (x′1, . . . , x

′
n) ∈ Xn we

have

dsample(S, S
′) = dham(S, S′) := min

π∈Πn

n∑
i=1

1{xi 6= x′π(i)}.

As Chatzikokolakis et al. [2013] note, focusing on the
case of differential privacy, we may take any distance on
the samples to provide analogues of differential privacy;
such alternative distances are important, for example,
for graph-based notions of differential privacy [Ka-
siviswanathan et al. 2013], location services [Andrés
et al. 2013], or event-level streams [Dwork et al. 2010,
Erlingsson, Pihur, and Korolova 2014].

We thus make the following definitions, which gen-
eralize those in prior work by treating distance between
two samples as a first-class object.

Definition 0.1 (Dwork et al. [Dwork et al. 2006b,a]).
Let ε, δ ≥ 0. The randomized mechanism M : Xn → Z
is (ε, δ)-differentially private for the distance dsample if
for any pair of samples S, S′ with dsample(S, S

′) ≤ 1
and any measurable subset A ⊂ Z ,

P(M(S) ∈ A) ≤ eεP(M(S′) ∈ A) + δ.

Rather than exhaustively discussing alternative pri-
vacy definitions, we note that each variant of differential
privacy (Rényi privacy [Mironov 2017] or concentrated
differential privacy [Dwork and Rothblum 2016, Bun
and Steinke 2016]) similarly rely on sample distances,
saying that a mechanism M(·) is private if its output
distribution changes little (under an appropriate metric)
when its input sample changes.

Element-level privacy definition
The standard distance in each privacy definition is the
Hamming distance between samples S, S′; this is sat-
isfying, as it limits any inferences that can be made
about an individual [Dwork et al. 2006b]. In some sce-
narios, this definition makes learning challenging (or,
depending on the task and desired privacy guarantee,
essentially impossible) [Duchi, Jordan, and Wainwright
2018]. It is thus natural to consider more fine-grained
distance notions to allow utility while providing suffi-
cient privacy. For our purposes, it is useful to consider
a scenario frequent in large-scale learning applications,
such as federated learning (e.g. [Abadi et al. 2016]),
where individual users contribute multiple data items
rather than a single item. In such cases, we protect a user
so that no one knows any particular thing the user has
done. For example, a student with a phone sends many

text messages, but may wish that his parents and teach-
ers never know whether he has ever sent a curse word,
irrespective of the number of times he may or may not
have sent one.

To formalize this, we introduce element-level pri-
vacy. A sample or dataset S consists of n user’s data
(or data units) S = {x(u)}nu=1, while each user u main-
tains local data of size m(u), where the size may de-
pend on the user x(u) = {x(u)

1 , . . . , x
(u)
m(u)}. For exam-

ple, individual u’s data may consist of the m(u) pho-
tos she has taken. External to the users are K clus-
ters {c1, . . . , cK} partitioning X , where we view the
cluster centroids as the elements to be made private,
and each datapoint x(u)

i belongs to precisely one clus-
ter ck (i.e. has a nearest element); we denote this by
x

(u)
i ∈ ck. The distance between two users’ local data
x = {x1, . . . , xn} and x′ = {x′1, . . . , x′m} is then the
number of clusters c1, . . . , cK with different member-
ships for the two users’ data, that is,

duser(x, x
′) = duser({x1, . . . , xn}, {x′1, . . . , x′m})

:=

K∑
k=1

1 {{xi : xi ∈ ck} 6= {x′i : x′i ∈ ck}} ,

(1)

where {xi : xi ∈ ck} are implicitly multi-sets.
Then two users’ data x, x′ are element-neighbors if
duser(x, x

′) ≤ 1; this is equivalent to allowing users to
differ arbitrarily on one element of their data. With this
distance definition, we can then define the element-level
sample distance by

delement(S, S
′) := min

π∈Πn

n∑
u=1

duser(x
(u), x′

(π(u))
). (2)

Two samples S, S′ of size n are element-neighbors if
each of the units within the sample is identical ex-
cept for (at most) one unit x ∈ S, x′ ∈ S′, where
duser(x, x

′) ≤ 1. The definition of element level privacy
is now immediate: we take the sample distance dsample

in any privacy definition (e.g. 0.1) to be delement.
Definition 0.2. A mechanism M satisfies element-level
differential privacy if it satisfies Definition 0.1 with dis-
tance dsample = delement.

Element-level differential privacy guarantees that the
releases of a mechanism trained on users’ sensitive data
does not leak any particular “element” the user has,
that is, whether a user has data belonging to any one
of the clusters c1, . . . , cK , no matter how many data
point belong to one of the clusters. It is useful to com-
pare this definition to two frequent definitions of pri-
vacy for large-scale learning systems. The first is event-
level privacy [Erlingsson, Pihur, and Korolova 2014],
which applies privacy commensurate with each individ-
ual event a user performs, for example, whenever a user
visits any website. This definition may be too weak:
consider a user who sends 50 text-messages consist-
ing of the phrase “Hello!” Then event-level privacy (say



with Def. 0.1) guarantees a likelihood ratio bound of
e50ε versus an otherwise identical user who never uses
the phrase “Hello!” In the case of element-level privacy,
however, the distance between these users is at most 1
regardless of how many times either says “Hello!” The
second common definition is user-level privacy, which
corresponds to the standard definitions with Hamming
distance; by taking a single cluster c1 = X in the def-
initions (1)–(2) of element level distances, one recov-
ers user-level privacy, but as we shall see, the additional
flexibility of element-level privacy allows more utility.

To get a feel for Definition 0.2, it is instructive to con-
sider two (somewhat stylized) examples.
Example 1 (Word frequency estimation): Consider
the problem of estimating frequent words used in text
(SMS) messages. Ignoring punctuation, we treat each
word as a cluster, so that for a dictionary of size d,
a user u’s data x(u) = {x(u)

1 , . . . , x
(u)
d } consists of

the counts x(u)
j ∈ N of the times user u typed word

j, a histogram of word counts. In Figure 1, for ex-
ample, the leftmost column has histogram with count
3 for the word “yo,” 3 for “bro,” and 0 for all other
words. The distance between two user data x, x′ is then
duser(x, x

′) =
∑d
j=1 1{xj 6= x′j}, the number of dis-

tinct counts. In this case, two users are neighboring
when their word use is identical except that one may
use a word j arbitrarily more or less than the other. 3

Example 2 (Website visit counts): Consider estimat-
ing the frequency of popular websites (URLs) that users
visit. In this case, a natural set of elements are do-
mains (the first part of a website name), while spe-
cific URLs belong to a single domain. For example,
https://en.wikipedia.org/wiki/Apple Inc. and https://en.
wikipedia.org/wiki/NeXT belong to the domain (clus-
ter) wikipedia.org, while http://web.stanford.edu/
∼jduchi/ and http://web.stanford.edu/∼asi/ belong to
stanford.edu. Then a user’s data consists of all
URLs he or she visits, while the distance between
users is the number of domains in which they visit
distinct URLs. The intuition here is that any mecha-
nism satisfying Definition 0.2 limits release of whether
a user ever even visits a website in a particular domain,
for example, wikipedia.org, stanford.edu, or
youtube.com. In contrast, standard differential pri-
vacy would protect whether a user has ever used the in-
ternet. 3

As these examples attempt to clarify, the important
facet of element-level DP is that it protects a data
provider from anyone ever knowing any particular thing
they have done, regardless of how many times they have
done it: visiting a domain, using a word, or other desired
protected element.

Properties of element-level differential privacy
By replacing the standard Hamming distance in the def-
inition of differential privacy with the element-based
distance (2), any element-level differentially private

mechanism inherits the typical properties private mech-
anisms enjoy, including privacy to post-processing,
group privacy, composition, and amplification of pri-
vacy by subsampling (see the book [Dwork and Roth
2014] for a discussion of these desiderata). Almost all of
these inheritances are immediate and we present them
in the full version of the paper.

Element-level private methods
One of our major goals is to demonstrate the method-
ological possibilities of mechanisms satisfying element-
level privacy, both to give some sense of the way to
design mechanisms satisfying the definition and to un-
derstand the potential utility benefits—in terms of more
accurate estimation—element-level privacy allows over
user-level notions of privacy. To that end, we present
two examples in this section of increasing sophistica-
tion: estimating multinomial frequencies, and stochastic
optimization (statistical learning).

We begin by attempting to give a somewhat gen-
eral picture, connecting to the classical Laplace mecha-
nisms and sensitivity analyses of Dwork et al. [2006b];
we specialize in the coming sections. Suppose each
user contributes a batch x = (x1, . . . , xm) of data,
and we wish to compute the average 1

n

∑n
u=1 f(x(u))

of a function f : Xm → R on S = {x(u)}nu=1.
Standard mechanisms add noise that scales with the
global sensitivity of the function f , that is, gs(f) :=
supx∈Xm,x′∈Xm |f(x) − f(x′)|, and the Gaussian
mechanism for (ε, δ)-differentially private release is

M(S) :=
1

n

n∑
u=1

f(x(u)) + gs(f) · N
(

0,
2 log 1

δ

ε2

)
.

In contrast, given a partition {c1, . . . , cK} ofX and cor-
responding user distance duser (recall Eq. (1)), the analo-
gous recipe here is to add noise scaling with the element
sensitivity of f ,

es(f) := sup
x,x′∈Xm

{|f(x)− f(x′)| s.t. duser(x, x′) ≤ 1} ,

(3)
which satisfies es(f) ≤ gs(f). Then the standard Gaus-
sian mechanism becomes

M(S) :=
1

n

n∑
u=1

f(x(u)) + es(f) · N
(

0,
2 log(1/δ)

ε2

)
(4)

and guarantee (ε, δ)-element-level differential privacy.
We see utility gains whenever es(f) � gs(f), which
we expect when the numberK of elements is large, pro-
viding finer granularity privacy.

Histogram estimation
We now turn to the problem of estimating item
frequencies—histogram estimation—one of the origi-
nal motivations for differential privacy [Dwork et al.
2006b, Ex. 3]. We have X(u) iid∼ Multinomial(m, p) for

https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/NeXT
https://en.wikipedia.org/wiki/NeXT
http://web.stanford.edu/~jduchi/
http://web.stanford.edu/~jduchi/
http://web.stanford.edu/~asi/


some m ∈ N and p ∈ Rd+ with pT1 = 1. We elabo-
rate this setting somewhat to allow more substantial el-
ements, as in Example 2, by assuming there are K clus-
ters {c1, . . . , cK} partitioning [d]. For shorthand, for
v ∈ Rd we let vck = [vj ]j∈ck ∈ R|ck|, and we denote
the probability of an item in ck by P (ck) = 1T pck =∑
j∈ck pj .
We consider a normal noise addition mechanism (4),

but our first step is to design a function insensitive to
changes within the partition {c1, . . . , cK} of [d], reduc-
ing the element sensitivity. To that end, we consider a
mechanism that first projects each cluster ck of counts
into an `2-ball, then adds Gaussian noise. For v ∈ Rd,
we define the projection

πρ,{ck}(v) := argmin
x∈Rd

{
‖x− v‖22 : ‖xck‖2 ≤ ρ

}
The mechanism is then

M(S, ρ, {ck}) :=
1

n

n∑
u=1

πρ,{ck}(X
(u))+N

(
0,
ρ2σ2

n2
Id

)
.

(5)
The privacy properties of mechanism (5) are immedi-
ate and we provide the statement in the appendix. We
now turn to an investigation of the error of the mech-
anism (5), providing the following proposition (whose
proof we give in the appendix).
Proposition 1. Let m ≥ 3, t ≥ 0, and assume that
for cluster probabilites P (c) =

∑
j∈c pj we have ρ ≥

min{3mP (c) + 3 logm + t,m} for each c ∈ {ck}.
Then there exists q ∈ Rd+ with 1T qc ≤ P (c) for each
c ∈ {ck} and a numerical constants C1 <∞,

E
[
|Mj(S, ρ, {ck})−mpj |2

]
≤ C1

[
q2
j

22t
+
mpj
n

+
σ2ρ2

n2

]
.

If ρ ≥ m, the preceding inequalities hold with t =∞.
Let us compare standard mechanism’s errors with

the element-level mechanism’s errors, focusing on the
squared error. For the user-level case, we have global
sensitivity ρ = m, and the proposition shows that
the mean-squared error for each coordinate scales as
max{mpjn , σ

2m2

n2 }. For element-level privacy, if we take
t = log n in the definition of ρ, we obtain mean-squared
error scaling as

max
c∈{ck}

{
mpj
n

,
σ2

n2

[
m2P (c)2 + log2m+ log2 n

]}
.

Thus, whenever the individual contribution sizes m are
large while probabilities of elements P (c) are small,
element-level mechanisms allow much more accurate
estimation of frequencies than standard private noise
addition. Of course, the best choice of the projection
threshold ρ for element-level privacy requires some
knowledge of the rough probabilities of each cluster, as
otherwise, it is impossible to choose ρ appropriately; a
two-stage estimator (to give rough upper bounds on the
element probabilities P (c)) makes this feasible.

Statistical learning and risk minimization
Our final application is a fairly careful investigation of
statistical learning problems in the context of element-
level differential privacy and realistic federated learn-
ing problems, where individuals contribute more than
a single data point (e.g. because they send many text
messages). The typical statistical learning or generic M-
estimation problem [Hastie, Tibshirani, and Friedman
2009, van der Vaart 1998] is as follows: for a sam-
ple space X and parameter space Θ, we have a loss
` : Θ× X → R+, where `(θ;x) measures the loss of a
parameter θ on observation x, and we wish to minimize
the average loss over a population P . In standard em-
pirical risk minimization or M-estimation, one receives
X(u) iid∼ P , then chooses θ̂n to minimize the empirical
average 1

n

∑n
u=1 `(θ;X

(u)).
In our context of element privacy, we modify this

slightly. Individuals (users) contribute batches of data
x ⊂ X , where the users are drawn from an underlying
population P . We assume that there is a prespecified
partition {c1, . . . , cK} of X , so that the element of pro-
tection is whether a user with data x = {x1, . . . , xm}
has any individual datum xi ∈ ck. Then the element-
level loss for a data batch x ∈ 2X averages losses within
each element,

`el(θ;x) :=

K∑
k=1

1 {x ∩ ck 6= ∅}
∑
xi∈ck `(θ;xi)

card{xi ∈ ck}
, (6)

that is, the sum of average losses in the non-empty ele-
ments in x. The idea of the averaging (6) is to make the
loss insensitive to modification of data belonging to any
single ck. For an underlying population distribution P ,
we then wish to solve the risk minimization problem

minimize
θ∈Θ

Lel(θ) := E[`el(θ;X)] =

∫
`el(θ;x)dP (x).

(7)
Given a sample S = {X(u)}nu=1 ∼ P , we approxi-
mate the risk (7) with Lnel(θ) := 1

n

∑n
u=1 `el(θ;X

(u)),
which we attempt to minimize as a proxy for (7). To
describe our algorithms and their properties, however,
we require a brief digression to provide a general analy-
sis of stochastic approximation procedures under noise,
giving an asymptotic convergence result that may be in-
teresting independent of its privacy implications.

A private stochastic gradient method We now turn
to the appropriate variant of the projected gradient
method for privacy. The key from an element-level pri-
vacy perspective is to apply a projected gradient up-
date on each of a user’s elements, then average them
together. Algorithm 1 captures this.

Because Algorithm 1 divides its updates into the clus-
ters ck before computing projections (clipping them to
a particular radius) and updates, its combination with
appropriate noise immediately yields several privacy
properties. The most important result for us is to ap-
ply Alg. 1 in a stochastic-gradient-type scheme, which



Algorithm 1: Element-level projected gradient update
sgd-el`α,ρ(θ0, x)

Require: Projection parameter ρ, stepsize α, initial
model θ0, partition of X into C = {c1, . . . , cK}, and
user data x = {x1, . . . , xm}
for each k ∈ {1, . . . ,K} such that x ∩ ck 6= ∅

Set B = {xi : xi ∈ ck}
θ+
k ← projΘ(θ0 − α 1

|B|
∑
x∈B∇`(θ0;x))

∆k ← (θ+
k − θ0)/α and [∆k]ρ ←

∆k min{1, ρ
‖∆k‖2

}
return

∑
k[∆k]ρ

allows us to both leverage the moments-accountant
and convergence guarantees of stochastic gradient-type
methods. Following the subsampling, for q ∈ (0, 1) let
Bu

iid∼ Bernoulli(q) or Bu be uniform on
∑
uBu = qn,

and for a sample S = {x(u)}nu=1 define the subsampled
mechanism

Mq(S; θ0) :=

( n∑
u=1

Bu·sgd-el`α,ρ(θ0, x
(u))

)
+N(0, ρ2σ2I).

For any sequence of stepsizes, we may define the pri-
vate stochastic approximation method

θk+1 := θk − αk
1

qn
Mq(S; θk). (8)

We consider the privacy of the iteration (8) both in
the standard (user-level) private scenario and under
element-level privacy. It is immediate that the up-
date sgd-el`α,ρ(θ0, ·) in Alg. 1 has element sensitiv-
ity at most 2ρ, where neighboring data x, x′ guar-
antee ‖sgd-el`α,ρ(θ0, x)− sgd-el`α,ρ(θ0, x

′)‖2 ≤ 2ρ.
For standard privacy, we consider the global sen-
sitivity of the update: assuming the upper bound
card(x) ≤ M on the cardinality of user data, we have
‖sgd-el`α,ρ(θ0, x)− sgd-el`α,ρ(θ0, x

′)‖2 ≤ 2(K ∧M)ρ
for any two sets x, x′ ⊂ X . We immediately obtain the
following two corollaries on the privacy of the private
stochastic gradient update (8).

Applications of element-level private stochastic ap-
proximation We now provide a generic convergence
result with a brief application to generalized linear
model estimation; our coming experiments evidence the
utility of our definitions and mechanisms. We first recall
the element-level population risk (7), which averages a
standard loss ` into the element-level loss `el. The fol-
lowing result shows that the private stochastic iteration
guarantees both asymptotic normality, and privacy. This
result requires certain assumptions (such as Lipschitz
conditions) which we provide in the appendix.
Proposition 2. Under certain conditions
(see Assumption A.1 in full version), define
θ
n

k = 1
k

∑k
i=1 θ

n
i , where the number of iter-

ations k = k(n) satisfies limn k(n)/n = γ.

Let Σel = Cov(∇`el(θ?;X)) and Σ =

∇2Lel(θ
?)−1

(
Σel + 1

γ

(
1
mΣel + ρ2σ2

m2 I
))
∇2Lel(θ

?)−1.
Then

√
n(θ

n

k − θ?)
d→N(0,Σ).

Fix δ > 0 and let ε(τ) = infα{γm
2

nτ2 + γm2

nτ2 α+ log δ−1

α |
α ≤ τ2 log n

m} for shorthand. Then

(i) If σ2 ≥ 2, then the collection {θni }ki=1 is (O(1) ·
ε(σ), δ)-element-level differentially private.

(ii) Assume each user data x has cardinality at most
card(x) ≤M . If σ2 ≥ (K ∧M)2τ2, where τ2 ≥ 2,
then {θni }ki=1 is (O(ε(τ)), δ)-differentially private.

As in the preceding examples, we see roughly the same
tradeoffs between user-level (standard) and element-
level privacy: for a given level ε, it is possible to pro-
vide the less-stringent element-level privacy with noise
a factor K ∧M less than that for user-level privacy.

Experiments
To demonstrate the behavior of element-level private
mechanisms, we present a series of experimental re-
sults in crowdsourced (federated) learning and stochas-
tic optimization. We perform both simulations, where
we may control all aspects of the experiments, and real-
world experiments. Our theoretical results and intuition
suggest that as the number of elements we consider
grows—meaning that the elements provide a finer par-
tition of the input space X—we should observe perfor-
mance improvements. In large-scale estimation, such as
federated learning [McMahan et al. 2017], user data is
rarely i.i.d. For example, some users take many photos
of their children, others of dogs, others of hikes with
friends; thus, a user may provide data only relating to a
few elements. Motivated by this potential variability, for
datasets with no pre-existing users, we diversify our ex-
periments by constructing pseudo-users and assigning
them varying numbers of elements.

In the remainder of the section, we present two ex-
periments on fitting large image classification models,
the first on tuning a model to a new dataset based on
Flickr images, and the second an investigation on train-
ing a full neural network. The full version includes more
experiments for histogram estimation and simulated lo-
gistic regression.

Large-scale image classification: Flickr
We investigate element-level privacy in the context of
model fitting for a large image classification task. In
this experiment, we vary several parameters: the privacy
level ε ∈ {1, 3,∞}, the number of distinct clusters into
which we partition the input space (K = 50, 500), and,
as we discuss in the introduction to the experiments, we
also vary the diversity of images of individual users, so
that we provide nominal “users” with data from 5, 30, or
100 distinct clusters/elements. As in the previous exper-
iments, we expect the following: as the number of clus-
ters K increases, element-level private methods should



improve relative to the user-level private method, and
similarly, as the diversity of individual users’ images
increases (the number of distinct elements), we expect
to see further relative improvement. This is natural: in
Algorithm 1 and the update (8), the magnitude of noise
addition relative to the scale of a user’s contribution de-
creases linearly in the number of distinct elements a
user provides.

To this end, we perform a model tuning experiment
on the Flickr dataset [Thomee et al. 2016] using a
ResNet50 network [He et al. 2016] pre-trained on Im-
ageNet [Deng et al. 2009], with reference implemen-
tation [Paszke et al. 2017]. This tuning means we fit
only the last layer of the network, that is, we fit a mul-
ticlass logistic regression on input features x ∈ Rd,
d = 2048, defined by the outputs of the second-to-last
ResNet50 layer. We use the 100 most popular Flickr im-
age tags as labels, which represent 89% of the chosen
data, and used an “unknown” label for anything remain-
ing, resulting in a 101 class multiclass problem. To con-
struct the elements into which we partition the images,
we chose a uniformly random subset of 100,000 Flickr
images, then used KMeans++ [Arthur and Vassilvitskii
2007] to cluster them into K = 50 and 500 clusters.
Then a given image representation x simply belongs to
the nearest cluster centroid. To fit the resulting model,
we use the stochastic gradient method in Algorithm 1 as
applied in the update (8). We construct a nominal col-
lection of n = 8000 users, assigning each m = 100
labeled images (x, y). We vary the image allocations,
so that (depending on the experiment) each user has im-
ages from on average k = 5, 30, 100 distinct elements.
We perform T = 40,000 updates (8) in each experi-
ment.

We present our results in Figure 2, plotting the maxi-
mum top-5 accuracy achieved versus iteration for many
parameter settings. We simultaneously present results
for different privacy levels ε, number K of clusters, and
diversity of clusters per user. We highlight a few of the
most salient points. First, user-level privacy with ε = 1
is substantially worse than any other method. Second,
we see roughly what we expect, in that the element-level
private algorithms achieve higher accuracy as the num-
ber of clusters and per-user diversity increase. Given
that true internet-scale datasets are several times larger
than the 400,000 image dataset we construct, this sug-
gests the element-level private mechanisms can provide
strong utility with satisfactory privacy.

Fully training a neural network: CIFAR10
We present our final experimental results for a classi-
fication problem on the CIFAR10 dataset [Krizhevsky
and Hinton 2009], showing that it is possible to pri-
vately train a neural network while providing element-
level privacy. We use the relatively simple convolutional
neural network model architecture in the PyTorch tuto-
rial [Paszke et al. 2017]. To construct the cluster cen-
troids (elements), we mimic the method we propose
for Flickr: we upsample the CIFAR image (using Py-
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Figure 2. Training curves for the Flickr dataset. The
legend ratio k/K represent the number of clusters (el-
ements) a user has (ku) over the total possible num-
ber of distinct clusters (K).

Torch), pass the resulting image through the pre-trained
ResNet50 network above, and then cluster the result-
ing 2048-dimensional vectors using KMeans++ [Arthur
and Vassilvitskii 2007] to construct K = 100 centroids
that partition the CIFAR dataset.

In Figure 3, we plot the difference in top-1 accuracy
between a private method and the fully-trained (non-
private) tutorial convolutional neural network [Paszke
et al. 2017] against iteration, varying the privacy pa-
rameter ε and cluster diversity. As expected, we see
two effects: first, as the sample size n grows, the ac-
curacy improves; second, as the diversity of elements
per user decreases, performance degrades as expected.
All user-level private instantiations have accuracy more
at least 15%-worse than the non-private accuracy. Con-
versely, the element-level-private algorithm with ε = 3,
n = 8000, and high element diversity per-user (30/100
data clusters present) achieves top-1 accuracy nearly
equal to non-private training.

0 5000 10000 15000 20000 25000 30000 35000 40000
iteration

0

10

20

30

40

50

di
ffe

re
nc

e 
in

 a
cc

ur
ac

y

user-level, epsilon: 1.0, 30/100, n: 8000
element-level, epsilon: 1.0, 5/100, n: 2000
user-level, epsilon: 3.0, 30/100, n: 2000
element-level, epsilon: 1.0, 30/100, n: 2000
user-level, epsilon: 3.0, 30/100, n: 8000
element-level, epsilon: 3.0, 5/100, n: 2000
element-level, epsilon: 1.0, 30/100, n: 8000
element-level, epsilon: 3.0, 30/100, n: 2000
element-level, epsilon: 3.0, 30/100, n: 8000

Figure 3. Difference in accuracy of a convolutional
neural network model on the CIFAR10 dataset trained
with privacy and without. Confidence interval are
±1.64 standard errors.
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