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Abstract

We prove that Fp sketch, a well-celebrated streaming algo-
rithm for frequency moments estimation, is differentially pri-
vate as is when p ∈ (0, 1]. Fp sketch uses only polyloga-
rithmic space, exponentially better than existing DP baselines
and only worse than the optimal non-private baseline by a
logarithmic factor. The evaluation shows that Fp sketch can
achieve reasonable accuracy with differential privacy guaran-
tee.

Introduction
Counting is one of the most fundamental operations in al-
most every area of computer science. It typically refers to
estimating the cardinality (the 0th frequency moment) of a
given set. However, counting can actually refer to the pro-
cess of estimating a broader class of statistics, namely pth

frequency moment, denoted Fp. Frequency moments esti-
mation is at the core of various important statistical prob-
lems. F1 is used for data mining (Cormode, Muthukrish-
nan, and Rozenbaum 2005) and hypothesis tests (Indyk and
McGregor 2008). F2 has applications in calculating Gini
index (Lorenz 1905; Gini 1912) and surprise index (Good
1989), training random forests (Breiman 2001), numerical
linear algebra (Clarkson and Woodruff 2009; Sarlos 2006)
and network anomaly detection (Krishnamurthy et al. 2003;
Thorup and Zhang 2004). Fractional frequency moments
are used in Shannon entropy estimation (Harvey, Nelson,
and Onak 2008; Zhao et al. 2007) and image decomposi-
tion (Geiger, Liu, and Donahue 1999).

Non-private frequency moments estimation is systemati-
cally studied in the data streaming model (Alon, Matias, and
Szegedy 1999; Charikar, Chen, and Farach-Colton 2002;
Thorup and Zhang 2004; Feigenbaum et al. 2002; Indyk
2006; Li 2008; Kane, Nelson, and Woodruff 2010; Nelson
and Woodruff 2009, 2010; Kane et al. 2011). This model
assumes extremely limited storage such as network routers.
The optimal non-private algorithm (Kane et al. 2011) uses
only polylogarithmic space to maintain frequency moments.
In the present work, we inherit the low space complexity re-
quirement for the versatility of the algorithm.
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The data being counted sometimes contains sensitive in-
formation. For example, to calculate Gini index, the data
should contain pairs of ID and income. Frequency moments
of such data, if published, might leak sensitive informa-
tion. To mitigate, the gold standard of differential privacy
(DP) should be applied. Special cases of DP frequency mo-
ments estimation such as p = 0, 1, 2 are well-studied in a
wide spectrum of works (Choi et al. 2020; Smith, Song, and
Thakurta 2020; Blocki et al. 2012; Sheffet 2017; Upadhyay
2014; Choi et al. 2020; Bu et al. 2021; Mir et al. 2011).

In the present work, we make the first customized effort
towards DP estimation of fractional frequency moments, i.e.
p ∈ (0, 1] with low space complexity. We show that a well-
known streaming algorithm, namely Fp sketch (Indyk 2006),
preserves differential privacy as is. With its small space com-
plexity, Fp sketch elegantly solves the trilemma between ef-
ficiency, accuracy, and privacy.

Problem Formulation. We use bold lowercase letters to
denote vectors (e.g. a,b, c) and bold uppercase letters to de-
note matrices (e.g. A,B,C). {1, · · · , n} is denoted by [n].

Let S = {(k1, v1), · · · , (kn, vn)} (n ≥ 1) be a stream of
key-value pairs where ki ∈ [m] (m ≥ 2), vi ∈ [M ] (M ≥
1). We would like to design a randomized mechanism M
that estimates the pth frequency moment:

Fp(S) =
m∑

k=1

(

n∑
i=1

I(ki = k)vi)
p

for p ∈ (0, 1] where I is an indicator function returning 1 if
k = ki and 0 otherwise.

To provide rigorous privacy guarantee, M should pre-
serve differential privacy as defined below. In our setting,
neighboring data streams differ in one key-value pair.
Definition 1 ((ϵ, δ)-Differential Privacy). A randomized al-
gorithm M is said to preserve (ϵ, δ)-DP if for two neighbor-
ing datasets S,S ′ and any measurable subset of the output
space s,

P[M(S) ∈ s] ≤ eϵP[M(S ′) ∈ s] + δ

When δ = 0, we omit it and denote the privacy guarantee as
ϵ-DP.

Oftentimes, n,m is large (e.g. IP streams on routers) so
M should take polylogarithmic space in terms of n,m.



Proof Intuition. We summarize the intuition behind the
proof that Fp sketch is differentially private when p ∈ (0, 1].
Recall that when proving DP for traditional mechanisms
such as the Gaussian mechanism, the core is to upper-bound
the ratio P (x)

Q(x) where P (x) and Q(x) are the probability
density functions of outputs when the inputs are neighbor-
ing datasets. In the proof of Gaussian mechanism, P (x) and
Q(x) can be viewed as a horizontal translation of each other
and the distance between their mean values is the sensitivity
of the output.

For Fp, however, neighboring inputs do not translate the
output distribution but instead change its scale. For example,
when p = 2, P (x) and Q(x) are Gaussian distributions with
the same mean and different variance. Inspired by the anal-
ogy to Gaussian mechanism, we need to address the below
two questions to prove differential privacy for Fp sketches.

• How to bound the difference between the scales of P (x)
and Q(x)?

• How to bound the ratio between the density functions of
P (x) and Q(x)?

To answer the first question, we propose a new sensi-
tivity definition called pure multiplicative sensitivity. Pure
multiplicative sensitivity depicts the maximal multiplica-
tive change in the output when the inputs are neighbor-
ing datasets. We analyze frequency moments estimation and
find that its pure multiplicative sensitivity is approximately
max{22p−2, 22−2p} when p ∈ (0, 1] and n ≫ M .

To answer the second question, we first revisit the special
case of p = 1. As shown by Mir et al. (2011), when p = 1,
P (x)
Q(x) is rigorously upper-bounded and thus F1 sketch pre-
serves ϵ-DP. By analogy, we conjecture that Fp, p ∈ (0, 1]
also satisfies similar properties, which is doubly confirmed
by the numerically simulated plots in Figure 2. The conjec-
ture is formally proved in Theorem 3.

Related Work
Frequency moments estimation is thoroughly studied in the
data streaming model. Alon, Matias, and Szegedy (1999)
proposed the first space-efficient algorithm for estimating
pth frequency moments when p is integer. Indyk (2006) ex-
tended the use case from integer moments to fractional mo-
ments using stable distributions. A line of following works
improve Indyk’s algorithm in various aspects such as space
complexity (Kane, Nelson, and Woodruff 2010; Nelson and
Woodruff 2009), time complexity (Nelson and Woodruff
2010; Kane et al. 2011) or accuracy (Li 2008, 2009).

Several special cases in private frequency moments es-
timation such as p = 0, 1, 2 were also well studied. The
most comparable work by Mir et al. (2011) also studied
the privacy property of Fp sketch. However, their analysis
is limited to integer cases when p = 0, 1, 2. Choi et al.
(2020) and Smith, Song, and Thakurta (2020) studied differ-
entially private F0 estimation. They separately proved that
the Flajolet-Martin sketch is differentially private as is. Sev-
eral independent works (Blocki et al. 2012; Sheffet 2017;
Upadhyay 2014; Choi et al. 2020; Bu et al. 2021) studied

the differential privacy guarantee in the special case p = 2
under the name of Johnson-Lindenstrauss projection.

On the other hand, there is barely any prior work focus-
ing on differentially private fractional frequency moments
estimation. Differentially private distribution estimation al-
gorithms (Acs, Castelluccia, and Chen 2012; Xu et al. 2013;
Bassily and Smith 2015; Suresh 2019; Wang et al. 2019)
can be used to provide a differentially private estimation of
fractional frequency moments. However, they are overkill
as their outputs contain much more information than the
queried fractional frequency moment. They only provide
sub-optimal privacy-utility trade-off and are exponentially
worse in terms of space complexity.

Datar et al. (2004) considered a similar (but not the same)
mathematical problem to the present work when designing
a locality-sensitive hashing scheme. However, their analysis
focuses on the simple cases when p = 1 and p = 2 and
totally depends on numerical analysis for p ∈ (0, 1).

Differentially Private Frequency Moments
Estimation

In this section, we first revisit Fp sketch and then prove the
differential privacy guarantee for Fp sketch step by step. Dif-
ferent from most differential privacy analyses based on ad-
ditive sensitivity, our proof depends on a variant of the mul-
tiplicative sensitivity (Dwork, Su, and Zhang 2015) called
pure multiplicative sensitivity. We give the first analysis of
pure multiplicative sensitivity for p-th frequency moments.
Then we motivate the differential privacy proof using a spe-
cial case when p = 1. Finally we proceed to the general
proof that Fp sketch preserves differential privacy. The main
challenge stems from the fact that the density functions of
p-stable distributions have no close-form expressions when
p ∈ (0, 1).

Revisiting Fp Sketch
For completeness, we revisit the well-celebrated Fp sketch
by Indyk (2006) (also known as stable projection or com-
pressed counting). We first introduce p-stable distribution,
the basic building block in Fp sketch. Then we review how
to construct and query Fp sketch using stable distributions.
Definition 2 (p-stable distribution). A random variable X
follows a β-skewed p-stable distribution if its characteristic
function is

ϕX(t) = exp(−ζ|t|p(1−
√
−1β sgn(t) tan(

πp

2
))

where −1 ≤ β ≤ 1 is the skewness parameter, ζ > 0 is the
scale parameter to the αth power.

In this paper, we focus on stable distributions with β = 0,
namely symmetric stable distributions. We denote a sym-
metric p-stable distribution by Dp,ζ , and slightly abuse the
notation to denote the density function as Dp,ζ(x). Note that
the density function is the inverse Fourier transform of the
characteristic function.

Dp,ζ(x) =
1

2π

∫
R
exp(−

√
−1tx)ϕ(t)dt

=
1

2π

∫
R
cos (xt) exp(−ζ|t|p)dt



If two independent random variables X1, X2 ∼ Dp,1,
then C1X1 + C2X2 ∼ Dp,Cp

1+Cp
2

. We refer to this property
as p-stability. Fp sketch leverages the p-stability of these dis-
tributions to keep track of the frequency moments.

The pseudo-code for vanilla Fp sketch is presented in Al-
gorithm 1. To construct, a sketch of size r is initialized to all
zeros and a projection matrix P is sampled from Dr×m

p,1 (line
2). For each incoming key-value pair (ki, vi), we multiply
the one-hot encoding of ki scaled by vi with the projection
matrix P and add it to the sketch (line 4).

a =

n∑
i=1

P × vieki =

m∑
k=1

P × (
∑
ki=k

vi)eki ∼ Dr
p,Fp(S)

To query the sketch, we estimate ζ from a using various
estimators such as median, inter-quantile, geometric mean
or harmonic mean as suggested by Indyk (2006), Li (2008)
and Li (2009).

Input : Data stream: S = {(k1, v1), · · · , (kn, vn)};
privacy budget: (ϵ, δ); accuracy constraint:
(γ, η); p stable distribution: Dp,1.

Construct:
Initialize a = {0}r, P ∼ Dr×m

p,1 ;
Update:

for i ∈ [n] do Let eki be the one-hot encoder of
ki, a = a + P × vieki ;

Query:
return scale estimator(a);

Algorithm 1: Fp sketch.

Pure multiplicative sensitivity of frequency
moments estimation
As we will see in the following two subsections, the dif-
ferential privacy proof for Fp sketch depends on the pure
multiplicative sensitivity of p-th frequency moments. As the
first step, we give the definition of pure multiplicative differ-
ential privacy. “Pure” is to distinguish from multiplicative
sensitivity as defined in Dwork, Su, and Zhang (2015).
Definition 3 (Pure multiplicative sensitivity). The multi-
plicative sensitivity of a deterministic mechanism M is de-
fined as the maximum ratio between outputs on neighboring
inputs S and S ′.

ρM(n) = sup
|S|=n,|S′|=n,d(S,S′)=1

∣∣ M(S)
M(S ′)

∣∣
We might omit the subscript and argument when they are
clear from the context.

The pure multiplicative sensitivity of Fp is as below.
Theorem 1 (Multiplicative sensitivity of Fp). A mechanism
M which accurately calculates Fp, p ∈ (0, 1] has pure mul-
tiplicative sensitivity upper bounded by

ρM = 22−2p
( n− 1 +M

n− 1 + (m− 1)
p−1
p

)p

Proof for Theorem 1. Theorem 1 gives an upper bound on
the multiplicative change when two input datasets with the
same size m differ in one entry. To prove, we first consider
a slightly different setting when the second dataset is gener-
ated by adding an entry to the first dataset.

Concretely, let u = {u1, · · · , um} where ui >
0,
∑m

i=1 ui = s, ∆ ≥ 0. We would like to find both upper
and lower bounds for the below expression.∑m

i=2 u
p
i + (u1 +∆)p∑m

i=2 u
p
i + up

1

,∀p ∈ (0, 1] (1)

To bound expression (1), we first observe the following
two inequalities (2) and (3).

∀a, b, c, d > 0, a ≥ b, c ≥ d,
a+ c

a+ d
≤ b+ c

b+ d
. (2)

∀p ∈ (0, 1], (

m∑
i=1

ui)
p ≤

m∑
i=1

up
i ≤ m1−p(

m∑
i=1

ui)
p (3)

Inequality (2) can be proved with simple algebra. The left-
hand-side of inequality (3) follows because

∑m
1 up

i is con-
cave in (u1, . . . , un) in the simplex defined by the conditions
ui ≥ 0 for all i, and

∑m
1 ui = s and hence the minimum

of
∑m

1 up
i on the simplex is attained at a vertex of the sim-

plex. The right-hand-side of inequality (3) is an instance of
the well-known generalized mean inequality (Sỳkora 2009).

First, let’s upper bound expression (1). According to in-
equality (2) and (3),

∑m
i=2 u

p
i + (u1 +∆)p∑m

i=2 u
p
i + up

1

(2)+(3)

≤
(
∑m

i=2 ui)
p + (u1 +∆)p

(
∑m

i=2 ui)p + up
1

=
(s− u1)

p + (u1 +∆)p

(s− u1)p + up
1

(3)

≤ 21−p(1 +
∆

s
)p

Similarly, to lower bound expression (1),∑m
i=2 u

p
i + (u1 +∆)p∑m

i=2 u
p
i + up

1

(2)+(3)

≥
(m− 1)1−p(

∑m
i=2 ui)

p + (u1 +∆)p

(m− 1)1−p(
∑m

i=2 ui)p + up
1

=
(s− u1)

p + ((m− 1)
p−1
p (u1 +∆))p

(s− u1)p + ((m− 1)
p−1
p u1)p

(3)

≥ 2p−1
( ((m− 1)

p−1
p − 1)u1 + s+ (m− 1)

p−1
p ∆

((m− 1)
p−1
p − 1)u1 + s

)p
≥ 2p−1(1 +

(m− 1)
p−1
p ∆

s
)p

Taking the division between the supremum and the infi-
mum, we get

ρM ≤ 22−2p(
s+M

s+ (m− 1)
p−1
p

)p ≤ 22−2p(
n− 1 +M

n− 1 + (m− 1)
p−1
p

)p



In a typical streaming model where m is large and n ≫
M , ρM ⪅ 22−2p ≤ 4. To get a better sense of how ρ
changes with p, we plot several curves with different hyper-
parameters in Figure 1. Note that the pure multiplicative sen-
sitivity only depends on n,m,M and p which are public in-
formation.
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Figure 1: Pure multiplicative sensitivity.
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Differentially Private F1 Sketch
Instead of directly diving into the complete analysis, we first
motivate the analysis with the special case of p = 1. In this
case, the symmetric 1st-stable distribution is the well-known
Cauchy distribution: D1,ζ(x) =

1
π ·

ζ
ζ2+x2 , and thus the anal-

yses are significantly simplified. Note that this special case
has already been studied before in Mir et al. (2011) so we do
not take it as our contribution. Instead, we only present it to
pave the way for the proof of general Fp sketch.
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Figure 3: Privacy budget ϵ vs. p. n = 215,m = 220,M =
24.

Theorem 2 (ϵ-DP for F1 sketch). Let ρ1 represent the multi-
plicative sensitivity of the first frequency moments. When the
size of the sketch r = 1, F1 is ln ρ1-differentially private.

Proof for Theorem 2. D1,F1
(x)

D1,ρ1F1
(x) =

ρ2
1F

2
1 +x2

ρ1(F 2
1 +x2)

is a decreas-
ing function. Thus,

1

ρ1
=

D1,F1
(∞)

D1,ρ1F1(∞)
≤ D1,F1

(x)

D1,ρ1F1(x)
≤ D1,F1

(0)

D1,ρ1F1(0)
= ρ1

Then, for any data stream S and arbitrary measurable subset
s,

P[F1(S) ∈ s] =

∫
x∈s

D1,F1(S)(x)dx

=

∫
x∈s

D1,F1(S)(x)

D1,F1(S′)(x)
D1,F1(S′)(x)dx

≤
∫
x∈s

ρ1D1,F1(S′)(x)dx = eln ρ1P[F1(S ′) ∈ s]

Differentially Private Fp Sketch, p ∈ (0, 1]
The example of F1 being ϵ-DP indicates the possibility that
Fp might have similar property when p ∈ (0, 1]. To validate,
we plot the curves for different values of ps as shown in
Figure 2. From the figure we can tell that when p ∈ (0, 1],
the ratio Dp,1(x)

Dp,2(x)
seems to be well-bounded and preserve ϵ-

DP.
We now prove the conjecture as formalized in Theorem 3.

Theorem 3 (ϵ-DP for Algorithm 1). Let ρp represent the
multiplicative sensitivity of the p-th frequency moments.
When r = 1 and p ∈ (0, 1], Fp sketch (Algorithm 1) is
1
p ln ρp-differentially private.

Proof for Theorem 3. To prove Theorem 3, we prove the
following inequality.

ρ
− 1

p
p < ρ−1

p ≤
Dp,Fp(x)

Dp,ρpFp
(x)

≤ ρ
1
p
p



We first prove the right-hand-side of the inequality. Ob-
serve that Dp,ζ(x) = ζ−

1
pDp,1(ζ

− 1
px) due to p-stability.

Thus,

Dp,Fp
(x)

Dp,ρpFp(x)
= ρ

1
p
p

Dp,1(F
− 1

p
p x)

Dp,1((ρpFp)
− 1

px)
≤ ρ

1
p
p

Dp,Fp
(0)

Dp,ρpFp(0)
= ρ

1
p
p

as Dp,1 is increasing on (−∞, 0] and decreasing on [0,∞),
and ρp ≥ 1.

To prove the left-hand-side of the inequality, we reorga-
nize it into the format of a Fourier transform.∫ ∞

0

(ρp exp(−Fpt
p)− exp(−ρpFpt

p)) cos(tx)dt ≥ 0

It suffices to show that

h(ρ) =

∫ ∞

0

exp(−ρFpt
p)

ρ
cos(tx)dt

is decreasing. Taking the first derivative of h, we have

∂h

∂ρ
= − 1

ρ2

∫ ∞

0

g(t) cos(tx)dt

where g(t) = exp(−ρFpt
p)(ρFpt

p + 1). According to
Pólya criterion (Gneiting 2001), it suffices to show that g
is positive definite. We first observe that the function 0 ≤
u 7→ (1 + u1/2)e−u1/2

is the Laplace transform of the pos-

itive function 0 < t 7→ e−1/(4t)

4
√
π t5/2

(the proof is deferred

to the end) and hence a mixture of exponential functions
0 ≤ u 7→ e−cu with c > 0. Thus with variable substitution,
the function s 7→ (1 + |s|p)e−|s|p is a mixture of functions
s 7→ e−c|s|2p with c > 0, which are positive definite for
any p ∈ (0, 1] as they are characteristic functions of stable
distributions.

The last step is to prove the function 0 ≤ u 7→ (1 +

u1/2)e−u1/2

is the Laplace transform of 0 < t 7→ e−1/(4t)

4
√
π t5/2

Note that the second derivative of (1 + u1/2)e−u1/2

in u is
e−u1/2

/(4u1/2). So, after a simple rescaling, it is enough to
show that

J(a) :=

∫ ∞

0

exp
{
− 1

t
− at

} dt

2
√
t
=

√
π

2

e−2
√
a

√
a

(4)

where a > 0.
Using substitutions t = u2 and then u = 1/(x

√
a), we

get

J(a) =

∫ ∞

0

exp
{
− 1

u2
− au2

}
du = K(a)/

√
a,

where

K(a) :=

∫ ∞

0

exp
{
− ax2 − 1

x2

} dx

x2
.

Note that K ′(a) = −J(a) and K(a) = J(a)
√
a. So, we get

the differential equation

J ′(a) = −
( 1√

a
+

1

2a

)
J(a),

whose general solution is given by

J(a) =
c√
a
e−2

√
a

for a constant c. To determine c, note that

K(a) = J(a)
√
a

=

∫ ∞

0

exp
{
− 1

u2
− au2

}
du

√
a

=

∫ ∞

0

exp
{
− a

y2
− y2

}
dy

and

c = K(0+) =

∫ ∞

0

exp{−y2} dy =

√
π

2
.

So, (4) follows.

Privacy Amplification by Sub-sampling
The last step of Algorithm 1 estimates ζ given samples from
the stable distributions. There are many candidate estimators
such as the geometric estimator and the harmonic estima-
tor (Li 2008, 2009). These estimators typically, as suggested
in Li (2008), require at least r ≥ 50 samples to give an accu-
rate estimation of ζ. However, the privacy parameter ϵ grows
with r with trivial composition (Dwork et al. 2006), which
might result in too weak privacy protection.

To address, we follow the standard approach, amplify-
ing privacy using sub-sampling. Different from Algorithm 1,
each input has probability q to be inserted into each dimen-
sion of a, as presented in Algorithm 2. If we take q = 1

r , then
the privacy parameters in Theorem 3 hold as is. The proof is
a simple application of the composition theorems (Dwork
et al. 2006) and privacy amplification (Theorem 8 in (Balle,
Barthe, and Gaboardi 2018)).

Theorem 4 (ϵ-DP for Algorithm 2). Let ρp represent the
multiplicative sensitivity of the p-th frequency moments.
When p ∈ (0, 1], Fp sketch with sub-sampling rate q is
qr
p ln ρp-differentially private.

Input : Data stream: S = {(k1, v1), · · · , (kn, vn)};
privacy budget: (ϵ, δ); accuracy constraint:
(γ, η); p stable distribution: Dp,1.

Construction
Initialize a = {0}r, P ∼ Dr×m

p,1 ;
for i ∈ [n] do

b ∼ Bernoulli(q);
Let eki

be the one-hot encoder of ki,
a = a + P × bvieki

end
Query

return scale estimator(a)/qp;
Algorithm 2: Fp sketch with sub-sampling. The only
change appears in line 3-4 and 7, corresponding to line
3 and 5 in Algorithm 1. Bernoulli(q) refers to Bernoulli
distribution with success probability q.
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Figure 4: Results on Synthetic Data.

Utility of Algorithm 2
We depict the accuracy of a Fp estimator with a pair of pa-
rameters (γ, η).

Definition 4 ((γ, η)-Accuracy). A randomized algorithm M
is said to be (γ, η)-accurate if

(1− γ)Fp(S) ≤ M(S) ≤ (1 + γ)Fp(S) w.p. 1− η

Algorithm 2 satisfies the following utility guarantee. The
space complexity is only worse than the optimal non-private
algorithm (Kane et al. 2011) by a logarithmic factor. The
accuracy bound is also a worst-case bound and the perfor-
mance in practice is typically much better (Section ).

Theorem 5 (Utility of Algorithm 2). ∀p ∈ (0, 1] and

∀γ, η ∈ (0, 1), Algorithm 2 is (γ+
√

1−2qp+1+q2p+1

λ , η+λ)-
accurate if r = O

(
γ−2 log( 1η )

)
. In this case, Algorithm 2

uses O
(
γ−2 log(mM/(γη)) log( 1η )

)
bits.

Proof. Let SAq(·) represent the sub-sampling process and
Fr
p represent a Fp sketch with length r. Then Algorithm 2

can be represented as Fr
p ◦ SAq where ◦ represents compo-

sition of mechanisms.
First, we need the accuracy of Fp sketch. According to

Theorem 4 of Indyk (2006), if we fix the sub-sampled items,

P[|F
O
(
γ−2 log( 1

η )
)

p ◦ SAq(S)− Fp ◦ SAq(S)| ≤ γFp ◦ SAq(S)]
≥ 1− η

Second, we need the accuracy of the sub-sampling pro-
cess. The expectation and variance of the sub-sampling pro-
cess is as follow.

E[Fp ◦ SA(S)] = qpFp(S),V[Fp ◦ SA(S)]
≤ (1− 2qp+1 + q2p+1)F 2

p (S)
(5)

According to Chebyshev’s inequality,

P[|Fp ◦ SA(S)− qpFp(S)| ≤
√

1− 2qp+1 + q2p+1

λ
Fp(S)]

≥ 1− λ
(6)

Combining (5) and (6) we get Theorem 5.

Evaluation
In this section, we first introduce experimental design, and
then present the evaluation results.

Evaluation Setup
As we would like to empirically understand Fp sketch’s
trade-off between space, error and privacy, we evaluate Fp

with p ∈ {0.25, 0.5, 0.75, 1} using synthetic streams of
different sizes and distributions. We also evaluate Fp with
p ∈ {0.05, 0.1, · · · , 0.95, 1} on real-world data. All the ex-
periments were run on a Ubuntu18.04 LTS server with 32
AMD Opteron(TM) Processor 6212 with 512GB RAM.

Synthetic Data. We first evaluate Fp sketches using syn-
thetic data. We synthesize two kinds of data: the key domain
is either uniformly or binomially distributed. The value do-
main is {1} by default. The size of the key domain is 1000.

Real-world Data. We also evaluate Fp sketches using
real-world application usage data (Ye et al. 2019) collected
by TalkingData SDK. There are more than 30 million events
in this dataset, each representing one access to the Talking-
Data SDK. We view the event type as the key and the value
is set to 1 by default.

Evaluation Results
In this section, we present the evaluation results. To avoid
the influence of outliers, we report the median and interquar-
tile of 100 runs for each data point except for the real-data
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Figure 5: Results on Real-world Data.
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Figure 6: The curves of Dp,1(x)
Dp,2p (x)

with different values of p ∈
(1, 2) on R+. The negative half is symmetric. The x-axis is log-
scale to highlight the complex monotone trends.

evaluation. For all the evaluation, the sketch size r is 50 as
suggested in Li (2008). The sub-sampling rate in all the ex-
periments is 0.02.

Synthetic Data. The evaluation results on synthetic data
are presented in Figure 4. For uniformly distributed data, we
observe that as the stream size increases, the multiplicative
error decreases. We conjecture the reason to be the effect
of sub-sampling. Concretely, each bin in the value domain
has to get enough samples to approximate the behavior of
the true distribution. On the other hand, when the data is
binomially distributed, the multiplicative error is relatively
stable with small fluctuation. We conjecture the reason is
that as binomial distribution is more concentrated, the sam-
ple complexity is smaller than uniform distribution. Besides,
for uniformly distributed data, ps close to 0 have relatively
large errors while the errors when p is close to 1 are small.
The reason is that the further p is from 1, the larger the in-
fluence of sub-sampling.

Real-world Data. The evaluation results for real-world
data are presented in Figure 5. We sampled 100,0000 data
points from the dataset and the key has a domain of size
1488095. Each data point is the median of 5 runs. We ob-
serve that the further p is from 1, the higher the multiplica-
tive error. This conforms with our observation in the evalua-
tion on synthetic data.

Conclusion & Future Work
This paper takes an important step towards narrowing the
gap of space complexity between private and non-private
frequency moments estimation algorithms. We prove that Fp

is differentially private as is when p ∈ (0, 1] and thus give
the first differentially private frequency estimation protocol
with polylogarithmic space complexity.

At the same time, we observe several open challenges.
First, the proof does not easily extend to p ∈ (1, 2). Fig-

ure 6 exhibits the complexity of monocity of Dp,1(x)
Dp,2p (x)

when
p ∈ (1, 2). The most complex curve when p = 1.99 is com-
posed of three monotonic parts in the figure. Hence, an in-
teresting next step is to fully understand the monotonicity
pattern of the ratio curve when p ∈ (1, 2) and get corre-
sponding privacy parameters. Second, the space complexity
of Algorithm 2 is still worse than the optimal non-private
algorithm by a factor of log(m). It is interesting to check
whether the optimal algorithm (Kane et al. 2011) also pre-
serves differential privacy.
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